• Title/Summary/Keyword: statistical properties of material

Search Result 183, Processing Time 0.026 seconds

Pooling-Across-Environments Method for the Generation of Composite-Material Allowables (환경조건간 합동을 이용한 복합재료 허용치 생성 기법)

  • Rhee, Seung Yun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.63-69
    • /
    • 2016
  • The properties of composite materials, when compared to those of metallic materials, are highly variable due to many factors including the batch-to-batch variability of raw materials, the prepreg manufacturing process, material handling, part-fabrication techniques, ply-stacking sequences, environmental conditions, and test procedures. It is therefore necessary to apply reliable statistical-analysis techniques to obtain the design allowables of composite materials. A new composite-material qualification process has been developed by the Advanced General Aviation Transport Experiments (AGATE) consortium to yield the lamina-design allowables of composite materials according to standardized coupon-level tests and statistical techniques; moreover, the generated allowables database can be shared among multiple users without a repeating of the full qualification procedure by each user. In 2005, NASA established the National Center for Advanced Materials Performance (NCAMP) with the purpose of refining and enhancing the AGATE process to a self-sustaining level to serve the entire aerospace industry. In this paper, the statistical techniques and procedures for the generation of the allowables of aerospace composite materials will be discussed with a focus on the pooling-across-environments method.

Effect of Specimen Thickness on the Statistical Properties of Fatigue Crack Growth Resistance in BS4360 Steel

  • Kim, Seon-Jin;Itagaki, Hiroshi;Ishizuka, Tetsuo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1041-1050
    • /
    • 2000
  • In this paper the effect of specimen thickness on fatigue crack growth with the spatial distribution of material properties is presented. Basically, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which varies randomly on the crack surface. The theoretical autocorrelation functions of fatigue crack growth resistance with specimen thickness are discussed for several correlation lengths. Constant ${\Delta}K$ fatigue crack growth tests were also performed on CT type specimens with three different thicknesses of BS 4360 steel. Applying the proposed stochastic model and statistical analysis procedure, the experimental data were analyzed for different specimen thicknesses for determining the autocorrelation functions and probability distributions of the fatigue crack growth resistance.

  • PDF

Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network (신경회로망을 이용한 ITO 박막 성장 공정의 모형화)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

Handle analysis of Cosmetic Textiles and its Correlation with Subjective haracteristics -Focus on puff textile-

  • Jung, Cheul Sun;Koo, Young Seok
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.312-318
    • /
    • 2014
  • This study examined the correlation between a handle evaluation of cosmetic puff textile and a sensory evaluation. The KES-F system was used to analyze the main mechanical factors for the handle evaluation and a statistical method was used for the sensory evaluation. The results revealed different mechanical properties and handle values of the tested cosmetic puff textiles. A material type and structure of the cosmetic textile affected the handle property of the material which is the most important factor for a cosmetic purpose. Particularly, the physical properties of textile material are likely to be important factors for the sensory property of cosmetic material. In addition, the sensory evaluation also revealed different sensory characteristics of the cosmetic efficiency according to the cosmetic puff textile. No close relationship was observed between the mechanical properties and sensory evaluation on the cosmetic puff textiles. The sensory evaluation of a cosmetic efficiency is not only decided by the physical and mechanical characteristics of the cosmetic textile material. Overall, when using textiles used for the cosmetic purposes, it is important to consider not only the proper mechanical properties of the textiles but also the use and sensory satisfaction. Development and selection of the cosmetic textiles should be focused on both the material function and consumer satisfaction.

P-value significance level test for high-performance steel fiber concrete (HPSFC)

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin;Marar, Khaled
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2018
  • Statistical analysis has found useful application in the design of experiments (DOE) especially optimization of concrete ingredients however, to be able to apply the concept properly using computer aided applications there has to be an upper and lower limits of responses fed to the system. In this study, the production of high-performance steel fiber concrete (HPSFC) at five different fiber addition levels by volume with two aspect ratios of 60 and 83 were studied under two curing methods completely dry cured (DC) and moist cured (MC) conditions. In other words, this study was carried out for those limits based on material properties available in North Cyprus. Specimens utilized were cubes 100 mm size casted and cured for 28 days and tested for compressive strength. Minitab 18 statistical software was utilized for the analysis of results at a 5 per cent level of significance. Experimentally, it was observed that, there was fluctuation in compressive strength results for the two aspect ratios and curing regimes. On the other hand P-value hypothesis evaluation of the response showed that at the stated level of significance, there was a statistically significant difference between dry and moist curing conditions. Upper and lower limit values were proposed for the response to be utilized in DOE for future studies based on these material properties. It was also suggested that for a narrow confidence interval and accuracy of the system, future study should increase the sample size.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Sensitivity Analysis on Rockfill Material Parameters Influencing Crest Displacement of Concrete-Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 정상부 변위에 영향을 미치는 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo;Seo, Min-Woo;Shin, Dong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.846-853
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam with this input parameter. The rockfill material properties for parametric study were obtained from the results of large scale triaxial tests on 34 rockfill materials in the 22 different sites. From the statistical analysis on these data, some statistical characteristics of rockfill material properties such as property range, distribution characteristics, and correlation between the properties were investigated. based on these characteristics, 27 property combinations were constituted by Latin Hypercube sampling method. Dam crest displacements after construction, impounding, and earthquake loading were evaluated by static and dynamic numerical analysis on each combination. From the sensitivity analysis, it was found that the crest displacement of CFR type dam was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the settlement and horizontal displacement of dam crest logarithmically decreased as the shear modulus increased and the difference between the maximum value and the minimum vale amounted to about 9.5 times in case of settlement and about 10 times in case of horizontal displacement.

  • PDF

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

Analysis on Application of Limit State Design Method for Bridge Evaluation Considering PSC Beam Bridge Experiment Results (PSC Beam교의 실측실험을 반영한 한계상태설계법 기반 교량 평가법 적용 분석)

  • Kim, Kyunghyun;Yoo, Minsun;Paik, Inyeol;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.235-244
    • /
    • 2021
  • This study analyzes the applicability of limit state design method on bridge evaluation by considering the experiment of the existing bridge. The test strength of the member is obtained from the PSC beam bridge experiment. The test strength is compared with the calculated strength obtained from the statistical characteristics of material test strength and the two values are almost the same. The response modification factor and dynamic impact factor are obtained from the vehicle loading test. The rating factor is calculated by applying limit state design method as well as current evaluation method and the results are compared. The reliability index of the test bridge is calculated by using the statistical properties of the member strength obtained from material test and simulation. When the statistical properties of the PSC beam tested in this study are applied, the reliability index with a larger value was obtained than the reliability index obtained with the statistical properties of the design code.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF