• Title/Summary/Keyword: statistical modeling technique

Search Result 134, Processing Time 0.022 seconds

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.

Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks

  • Ashteyat, Ahmed M.;Ismeik, Muhannad
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Artificial neural network models can be successfully used to simulate the complex behavior of many problems in civil engineering. As compared to conventional computational methods, this popular modeling technique is powerful when the relationship between system parameters is intrinsically nonlinear, or cannot be explicitly identified, as in the case of concrete behavior. In this investigation, an artificial neural network model was developed to assess the residual compressive strength of self-compacted concrete at elevated temperatures ($20-900^{\circ}C$) and various relative humidity conditions (28-99%). A total of 332 experimental datasets, collected from available literature, were used for model calibration and verification. Data used in model development incorporated concrete ingredients, filler and fiber types, and environmental conditions. Based on the feed-forward back propagation algorithm, systematic analyses were performed to improve the accuracy of prediction and determine the most appropriate network topology. Training, testing, and validation results indicated that residual compressive strength of self-compacted concrete, exposed to high temperatures and relative humidity levels, could be estimated precisely with the suggested model. As illustrated by statistical indices, the reliability between experimental and predicted results was excellent. With new ingredients and different environmental conditions, the proposed model is an efficient approach to estimate the residual compressive strength of self-compacted concrete as a substitute for sophisticated laboratory procedures.

Modeling of Plasma Etch Process using a Radial Basis Function Network (레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoungyoung;Kim, Byungwhan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A new model of plasma etch process was constructed by using a radial basis function network (RBFN). This technique was applied to an etching of silicon carbide films in a NF$_3$ inductively coupled plasma. Experimental data to train RBFN were systematically collected by means of a 2$^4$ full factorial experiment. Appropriateness of prediction models was tested with test data consisted of 16 experiments not pertaining to the training data. Prediction performance was optimized with variations in three training factors, the number of pattern units, width of radial basis function, and initial weight distribution between the pattern and output layers. The etch responses to model were an etch rate and a surface roughness measured by atomic force microscopy. Optimized models had the root mean-squared errors of 26.1 nm/min and 0.103 nm for the etch rate and surface roughness, respectively. Compared to statistical regression models, RBFN models demonstrated an improvement of more than 20 % and 50 % for the etch rate and surface roughness, respectively. It is therefore expected that RBFN can be effectively used to construct prediction models of plasma processes.

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

A Study On Intelligent Robot Control Based On Voice Recognition For Smart FA (스마트 FA를 위한 음성인식 지능로봇제어에 관한 연구)

  • Sim, H.S.;Kim, M.S.;Choi, M.H.;Bae, H.Y.;Kim, H.J.;Kim, D.B.;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • This Study Propose A New Approach To Impliment A Intelligent Robot Control Based on Voice Recognition For Smart Factory Automation Since human usually communicate each other by voices, it is very convenient if voice is used to command humanoid robots or the other type robot system. A lot of researches has been performed about voice recognition systems for this purpose. Hidden Markov Model is a robust statistical methodology for efficient voice recognition in noise environments. It has being tested in a wide range of applications. A prediction approach traditionally applied for the text compression and coding, Prediction by Partial Matching which is a finite-context statistical modeling technique and can predict the next characters based on the context, has shown a great potential in developing novel solutions to several language modeling problems in speech recognition. It was illustrated the reliability of voice recognition by experiments for humanoid robot with 26 joints as the purpose of application to the manufacturing process.

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

A Dynamic Rain Attenuation Model for Adaptive Satellite Communication Systems (적응형 위성통신 시스템 설계를 위한 동적 강우 감쇠 모델)

  • Zhang, Meixiang;Kim, Soo-Young;Pack, Jeong-Ki
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • Signal fading due to rain is one of the most significant factors degrading link quality in satellite communication systems. Adaptive transmission is considered to be the most efficient means to countermeasure the rain attenuation. In order to develop and design a good adaptive transmission system, we need a dynamic rain attenuation model which can synthesize time series of rain attenuation. In this paper, we present a modeling technique for dynamic rain attenuation using a Markov process. We derive statistical fading properties of the rain attenuation data measured in second time interval and define four states in the Markov process. We synthesize the rain attenuation data using the 4-state Markov process, and compare statistical properties of the simulated data to those of the measured data.

Effect of Random Geometry Perturbation on Acoustic Scattering (기하형상의 임의교란이 음향산란에 미치는 영향)

  • 주관정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF

Impedance-based health monitoring and mechanical testing of structures

  • Palomino, Lizeth Vargas;de Moura, Jose Dos Reis Vieira Jr.;Tsuruta, Karina Mayumi;Rade, Domingos Alves;Steffen, Valder Jr.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.15-25
    • /
    • 2011
  • The mechanical properties obtained from mechanical tests, such as tensile, buckling, impact and fatigue tests, are largely applied to several materials and are used today for preliminary studies for the investigation of a desired element in a structure and prediction of its behavior in use. This contribution focus on two widely used different tests: tensile and fatigue tests. Small PZT (Lead Titanate Zirconate) patches are bonded on the surface of test samples for impedance-based health monitoring purposes. Together with these two tests, the electromechanical impedance technique was performed by using aluminum test samples similar to those used in the aeronautical industry. The results obtained both from tensile and fatigue tests were compared with the impedance signatures. Finally, statistical meta-models were built to investigate the possibility of determining the state of the structure from the impedance signatures.

Impact of Social Networks Safety on Marketing Information Quality in the COVID-19 Pandemic in Saudi Arabia

  • ALNSOUR, Iyad A.;SOMILI, Hassan M.;ALLAHHAM, Mahmoud I.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.223-231
    • /
    • 2021
  • The study aimed to investigate the impact of social networks safety (SNS) on the marketing information quality (MIQ) during the COVID-19 pandemic in Saudi Arabia. The study examines the statistical differences in social networks safety SNS and marketing information quality MIQ according to the demographics such as age, sex, income, and education. For this study purpose, information security and privacy are two components of social networks safety. The research materials are website resources, regular books, journals, and articles. The population includes all Saudi users of social networks. The figures show that active users of the social network reached 25 Million in 2020. The snowball method was used and sample size is 500 respondents and the questionnaire is the tool for the data collection. The Structural Equation Modelling SEM technique is used. Convergent Validity, Discriminate Validity, and Multicollinearity are the main assumptions of structural equation modeling SEM. The findings show the high positive impact of SNS networks safety on MIQ and the statistical differences in such variables refer to education. Finally, the study presents a set of future suggestions to enhance the safety of social networks in Saudi Arabia.