DOI QR코드

DOI QR Code

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem (Department of Transportation Engineering, Faculty of Engineering, Yalova University)
  • Received : 2019.06.05
  • Accepted : 2019.09.26
  • Published : 2019.11.25

Abstract

In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Keywords

References

  1. Abdelkarim, O.I., Gheni, A., Anumolu, S., Wang, S. and ElGawady, M. (2015), "Hollow-core FRP-concrete-steel bridge columns under extreme loading", Report No. cmr15-008; Missouri Department of Transportation Research, Development and Technology, Missouri University of Science and Technology, MO, USA.
  2. Aslani, F., Uy, B. and Tao, Z. and Mashiri, F. (2015), "Behaviour and design composite columns incorporating compact highstrength steel plates", J. Constr. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005
  3. Cheng, M.Y. and Cao, M.T. (2016), "Estimating strength of rubberized concrete using volutionary multivariate adaptive regression splines", J. Civ. Eng. Manag., 22(5), 711-720. https://doi.org/10.3846/13923730.2014.897989
  4. de Oliveira, W.L.A., de Nardin, S., de Cresce El Debs, A.L.H. and El Debs, M.K. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFT columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004
  5. Dutta, S., Murthy, A.R., Kim, D. and Samui, P. (2017), "Prediction of compressive strength of self-compacting concrete using intelligent computational modelling", CMC: Computers, Materials & Continua, 53(2), 157-174. https://doi.org/10.3970/cmc.2017.053.167
  6. Ellobody, E., Young, B. and Lam, D. (2006), "Behavior of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  7. Engin, S., Ozturk, O. and Okay, F. (2015), "Estimation of ultimate torque capacity of the SFRC beams using ANN", Struct. Eng. Mech., Int. J., 53(5), 939-956. https://doi.org/10.12989/sem.2015.53.5.939
  8. Erdem, H. (2017), "Predicting the moment capacity of RC slabs with insulation materials exposed to fire by ANN", Struct. Eng. Mech., Int. J., 64(3), 339-346. http://dx.doi.org/10.12989/sem.2017.64.3.339
  9. Fox, J. (2002), "Nonparametric Regression. Appendix to An R and S-PLUS Companion to Applied Regression", Salford Systems, Inc., "MARSTM User Guide".
  10. Francis, L.A. (2001), "Neural Networks Demystified", Casualty Actuarial Society Forum, pp. 253-320.
  11. Friedman, J.H. (1988), "Fitting Functions to Noisy Data in High Dimensions", Technical Report No. LCS101; Department of Statistics, School of Humanities & Sciences, Standford University, Standford, CA, USA.
  12. Friedman, J.H. (1991), "Multivariate adaptive regression splines", The Annals of Statistics, 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
  13. Friedman, J.H. and Silverman, B.W. (1989), “Flexible parsimonious smoothing and additive modelling”. Technometrics, 31, 3-39. https://doi.org/10.1080/00401706.1989.10488470
  14. Gardener, N.J. (1968), "Use of spiral welded steel tubes in pipe columns", J. Am. Concrete Inst. (ACI), 65(11), 937-942.
  15. Gardener, N.J. and Jacobson, R. (1967), "Structural behavior of concrete filled steel tubes", J. Am. Concrete Inst. (ACI), 64(7), 404-413.
  16. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  17. Guler, S., Copur, A. and Aydogan, M. (2013), "Axial capacity and ductility of circular UHPC-filled steel tube columns", Mag. Concrete Res., 65(15), 898-905. https://doi.org/10.1680/macr.12.00211
  18. Guler, S., Copur, A. and Aydogan, M. (2014), "A comparative study on square and circular high strength concrete-filled steel tube columns", Adv steel Constr., 10(2), 234-247. https://doi.org/10.18057/IJASC.2014.10.2.7
  19. Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16(1), 99-114. https://doi.org/10.1007/s13296-016-3009-9
  20. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
  21. Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
  22. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
  23. Han, L.H., Hou, C.C. and Wang, Q.L. (2014), "Behavior of circular CFST stub columns under sustained load and chloride corrosion", J. Constr. Steel Res., 103, 23-36. https://doi.org/10.1016/j.jcsr.2014.07.021
  24. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  25. Johansson, M. and Gylltoft, K. (2002), "Mechanical behavior of circular steel-concrete composite stub columns", J. Struct. Eng., ASCE, 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
  26. Kaur, J. and Kaur, K. (2017), "A fuzzy approach for an IoT-based automated employee performance appraisal", CMC: Computers, Materials & Continua, 53(1), 23-36.
  27. Kitada, T. (1998), "Ultimate strength and ductility of state-of-theart concrete-filled steel bridge piers in Japan", Eng. Struct., 20(4-6), 347-354. https://doi.org/10.1016/S0141-0296(97)00026-6
  28. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  29. Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of highstrength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67, 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003
  30. Li, J. and Yang, E.H. (2018), "Probabilistic-based assessment for tensile strain-hardening potential of fiber-reinforced cementitious composites", Cement Concrete Compos., 91, 108-117. https://doi.org/10.1016/j.cemconcomp.2018.05.003
  31. Liu, D.L. and Gho, W.M. (2005), "Axial load behaviour of highstrength rectangular concrete filled steel tubular stub columns", Thin Wall Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007
  32. Liu, D.L., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J Constr Steel Res., 59 (12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8
  33. Lokuge, W., Wilson, A., Gunasekara, C., Law, D.W. and Setunge, S. (2018), "Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model", Constr. Build. Mater., 166(30), 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175
  34. Lue, D.M., Liu, J.L. and Yen, T. (2007), "Experimental study on rectangular CFST columns with high-strength concrete", J. Constr. Steel Res., 63(1), 37-44. https://doi.org10.1016/j.jcsr.2006.03.007
  35. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S.B. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., Int. J., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471
  36. O'Shea, M.D. and Bridge, R.Q. (1994), "Tests on thin-walled concrete-filled steel tubes", Proceedings of the 12th International Specialty Conference on Cold-Formed Steel Strucures, St. Louis, MO, USA, October, pp. 399-419.
  37. O'Shea, M.D. and Bridge, R.Q. (1998), "Tests on circular thinwalled steel tubes filled with medium and high strength concrete", Austral. Civil Eng. Transact., 40, 15-27.
  38. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., ASCE, 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  39. Parab, S., Srivastava, S., Samui, P. and Murthy, A.R. (2014), "Prediction of fracture parameters of high strength and ultra high strength concrete beams using gaussian process regression and least squares support vector machine", CMES-Comp. Model. Eng., 101(2), 139-158. https://doi.org/10.3970/cmes.2014.101.139
  40. Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm", Appl. Sci., 9(14), 2802. https://doi.org/10.3390/app9142802
  41. Sakino, K. and Hayashi, H. (1991), "Behavior of concrete filled steel tubular stub columns under concentric loading", Proceedings of the 3rd International Conference on Steel Concrete Composite Structures, Fukuoka, Japan, September, pp. 25-30.
  42. Sakino, K. and Sun, Y. (2000), "Steel jacketing for improvement of column strength and ductility", Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand.
  43. Sakino, K., Nakahara, H., Morino, S. amd Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns" J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  44. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  45. Shah, V.S., Shah, H.R., Samui, P. and Murthy, A.R. (2014), "Prediction of fracture parameters of high strength and ultra-high strength concrete beams using minimax probability machine regression and extreme learning machine", CMC: Computers, Materials & Continua, 44 (2), 73-84. https://doi.org/10.3970/cmc.2014.044.073
  46. Tan, K.F., Pu, X.C. and Cai, S.H. (1999), "Study on mechanical properties of extra strength concrete encased in steel tubes", J. Build. Struct., 20(1), 10-15. [In Chinese]
  47. Tomii, M., Yoshimura, K. and Morishita, Y. (1977), "Experimental studies on concrete filled steel tubular stub columns under concentric loading", Proceedings of the International Colloquium on Stability of Structures Under Static and Dynamic Loads", Washington DC, USA, May, pp. 718-741.
  48. Uy, B. (2001), Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
  49. Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037
  50. Yamamoto, T., Kawaguchi, J. and Morino, S. (2000), "Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns", Proceedings of the United Engineering Foundation Conference on Composite Construction in Steel and Concrete IV (AICE), Banff, Canada, June, pp. 879-891.
  51. Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concretefilled steel tube stub columns", J. Constr. Steel Res., 63, 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009
  52. Yu, Q., Tao, Z., Wu, Y.X. (2008), "Experimental behaviour of high performance concrete filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
  53. Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S.K. (2013), "Multivariate adaptive regression splines model to predict fracture characteristics of high strength and ultra high strength concrete beams", CMC: Computers, Materials & Continua, 36(1), 73-97. https://doi.org/10.3970/cmc.2013.036.073
  54. Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S.K. (2014), "Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine", Int. J. Damage Mech., 23(7), 979-1004. https://doi.org/10.1177/1056789514520796

Cited by

  1. Investigation of steel fiber effects on concrete abrasion resistance vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.367
  2. Seismic and economic performance of a mid-rise cassette structure vol.23, pp.16, 2019, https://doi.org/10.1177/1369433220942871
  3. Integration of support vector regression and grey wolf optimization for estimating the ultimate bearing capacity in concrete-filled steel tube columns vol.33, pp.14, 2019, https://doi.org/10.1007/s00521-020-05605-z
  4. Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461