• 제목/요약/키워드: statistical forecast model

검색결과 254건 처리시간 0.03초

도시동태모델을 이용한 경주 지역사회변화 예측 (Forecasting a Gyeongju's Local Society Change Using Urban Dynamics Model)

  • 이영찬
    • 경영과학
    • /
    • 제25권3호
    • /
    • pp.27-43
    • /
    • 2008
  • This study analyzes the changes of Gyeongju local society because of setting up low and intermediate level radioactive waste disposal site by using urban dynamics model. Specifically, after examining 'Gyeongju Long-Term Development Plan' announced in 2007, I establish the number of industries, population, gross local product, residents' income, and the long term employment condition as essential change-causing factors in Gyeongju local society based on the Big3 government project, and forecast it by using 'Gyeongju long-Term Development Plan' and all sorts of statistical data. In this stage, I assume 3 scenarios(basic, optimistic, and pessimistic view) to estimate the changes of local society more exquisitely, and scenarios are composed through mediation about variables of a growth rate and an inflow or outflow rate. The result shows that Gyeonaju local society would have growing changes by 2020. The essential change-causing factors are as follows. The case of population is estimated that it starts going down at the level of approximately 270 thousand by 2009, starts going up continuously after 2009, the year of completion of low and intermediate level radioactive waste disposal site, and increases from the level of about 300 thousand as minimum to 340 thousand as maximum in 2020. The estimates of other cases are made that the number of Industries has about 10 thousand increases, gross local product has almost 6 trillion increases, nominal gross national income doubles, as well as residences have approximately 280 thousand increases, and also made that employment condition also improves continuously, and diffusion ratio of house starts going up but the amount of supplies is a little bit insufficient in the long view.

딥러닝을 이용한 이변량 장기종속시계열 예측 (Bivariate long range dependent time series forecasting using deep learning)

  • 김지영;백창룡
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.69-81
    • /
    • 2019
  • 본 논문에서는 딥러닝을 이용한 이변량 장기종속시계열(long-range dependent time series) 예측을 고려하였다. 시계열 데이터 예측에 적합한 LSTM(long short-term memory) 네트워크를 이용하여 이변량 장기종속시계열을 예측하고 이를 이변량 FARIMA(fractional ARIMA) 모형인 FIVARMA 모형과 VARFIMA 모형과의 예측 성능을 실증 자료 분석을 통해 비교하였다. 실증 자료로는 기능적 자기공명 영상(fMRI) 및 일일 실현 변동성(daily realized volatility) 자료를 이용하였으며 표본외 예측(out-of sample forecasting) 오차 비교를 통해 예측 성능을 측정하였다. 그 결과, FIVARMA 모형과 VARFIMA 모형의 예측값에는 미묘한 차이가 존재하며, LSTM 네트워크의 경우 초매개변수 선택으로 복잡해 보이지만 계산적으로 더 안정되면서 예측 성능도 모수적 장기종속시계열과 뒤지지 않은 좋은 예측 성능을 보였다.

다중개입 계절형 ARIMA 모형을 이용한 KTX 수송수요 예측 (KTX passenger demand forecast with multiple intervention seasonal ARIMA models)

  • 차효영;오윤식;송지우;이태욱
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.139-148
    • /
    • 2019
  • 본 연구는 KTX 수송수요를 예측하기 위한 방법으로 다중개입 시계열 모형을 제안하였다. 구체적으로 2011년 이전의 자료로서 경부 2단계 개통 개입만 고려한 Kim과 Kim (Korean Society for Railway, 14, 470-476, 2011)의 연구를 수정 보완하기 위해 다양한 개입이 추가적으로 발생하고 있는 2011년 이후의 시계열 자료를 효과적으로 모델링하는 한편 KTX 수송수요를 정확히 예측하기 위한 방법으로 다중개입 계절형 ARIMA 모형을 도입하였다. 자료 분석을 통해 KTX 수송수요에 영향을 주었던 경부 및 호남 2단계 개통, 메르스 발병과 설추석 명절 등 다양한 개입의 효과를 효과적으로 해석하는 한편, 이를 통해 예측의 정확성을 높일 수 있음을 확인하였다.

인구통계학적 요인 및 원격검침 자료를 활용한 가정용 물 사용패턴 분류 및 물 사용량 예측 연구 (Water consumption forecasting and pattern classification according to demographic factors and automated meter reading)

  • 김기범;박해금;김태현;형진석;구자용
    • 상하수도학회지
    • /
    • 제36권3호
    • /
    • pp.149-165
    • /
    • 2022
  • The water consumption data of individual consumers must be analyzed and forecast to establish an effective water demand management plan. A k-mean cluster model that can monitor water use characteristics based on hourly water consumption data measured using automated meter reading devices and demographic factors is developed in this study. In addition, the quantification model that can estimate the daily water consumption is developed. K-mean cluster analysis based on the four clusters shows that the average silhouette coefficient is 0.63, also the silhouette coefficients of each cluster exceed 0.60, thereby verifying the high reliability of the cluster analysis. Furthermore, the clusters are clearly classified based on water usage and water usage patterns. The correlation coefficients of four quantification models for estimating water consumption exceed 0.74, confirming that the models can accurately simulate the investigated demographic data. The statistical significance of the models is considered reasonable, hence, they are applicable to the actual field. Because the use of automated smart water meters has become increasingly popular in recent year, water consumption has been metered remotely in many areas. The proposed methodology and the results obtained in this study are expected to facilitate improvements in the usability of smart water meters in the future.

안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증 (Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation)

  • 박이준;김정훈
    • 대기
    • /
    • 제33권5호
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

Prophet와 GRU을 이용하여 단중기 전력소비량 예측 (Short-and Mid-term Power Consumption Forecasting using Prophet and GRU)

  • 손남례;강은주
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.18-26
    • /
    • 2023
  • 빌딩에너지관리시스템(BEMS: Building Energy Management System)은 생산 및 소비되는 에너지를 효율적으로 관리하는 시스템이다. 그러나 건물 내 전력소비는 물리적인 특성상으로 인해 생산 및 소비가 일정하지 않아 안정적인 전력 공급이 필수적이다. 이에 따라 건물의 안정적인 전력 공급을 위해서는 정확한 건물 내 전력 소비 예측이 중요하다. 최근에는 시계열분석, 통계분석, 인공지능 등 다양한 방법을 이용하여 전력소비예측에 관한 연구가 진행되고 있다. 본 논문은 Prophet 모델의 장점과 단점을 분석하여 장점인 growth, seasonality, holidays를 선택하였고, Prophet 모델의 단점인 데이터의 복잡성과 외부변수(기후 데이터)의 제한성을 해결하기 위하여 GRU을 조합하여 단기(2일) 및 중기(7일, 15일, 30일) 전력소비량 예측 알고리즘을 제안한다. 실험결과, 제안한 방법은 기존 GRU 및 Prophet 모델보다 성능이 우수하였다.

장외시간 수익률을 반영한 실현변동성 추정치들의 비교 (Comparison of realized volatilities reflecting overnight returns)

  • 조수진;김도연;신동완
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.85-98
    • /
    • 2016
  • 본 논문은 장외거래 수익률을 이용하여 추정한 여러 실현변동성들을 실증적으로 비교분석한다. 실제 금융 자산 시장에서는 장외시간이나 휴일에 거래가 적거나 드물게 나타나기 때문에 하루 전체의 실현변동성을 정확히 계산하는데 문제가 발생한다. 이를 해결하기 위해 제안되어진 장외거래 수익률을 여러 가지 방법으로 반영한 다양한 실현변동성의 추정치들에 대한 검토가 이루어진다. 실제 데이터의 실현변동성 추정치들의 예측정확성을 비교하기 위해 미국의 NASDAQ 지수와 S&P500 지수와 우리나라의 KOSPI 지수와 원/달러환율이 분석된다. 적분변동성의 불편추정치인 다음날의 로그수익률의 제곱을 기준으로 일일 실현 변동성의 추정치들은 비교되어지며 비교를 위해 절대평균오차(MAE)와 제곱평균오차근(RMSE)이 이용된다. 또한 통계적 추론을 위하여 Model Confidence Set(MCS) 방법과 Diebold-Mariano 검정법을 사용한다. 세 가지 주가지수 데이터에 대해 동일한 최적 방법이 선택되어지는데, 장외시간 수익률을 이용하여 장내시간 실현변동성의 크기 조정을 한 방법이다.

VAR과 VECM 모형을 이용한 해운시장 분석 (Analysis of Shipping Markets Using VAR and VECM Models)

  • 고병욱
    • 무역학회지
    • /
    • 제48권3호
    • /
    • pp.69-88
    • /
    • 2023
  • 본 연구는 VAR 및 VECM 모형을 활용해 컨테이너선, 건화물선, VLCC(유조선) 해운시장의 물동량(수요), 선박량(공급), 운임(가격)의 동태적 특성을 분석한다. 이를 통해 시장 참여자들이 실제 업무에서 인지한 시장 특성을 통계적 패턴으로 이해할 수 있을 것으로 기대된다. 세 가지 해운시장 모두에서 나타나는 통계적 패턴은 다음과 같다: 1) 그란저 인과성 분석 결과, 전기에 선박량이 증가하면 다음기에는 운임이 하락한다. 2) 충격-반응 분석 결과, 물동량 충격은 운임을 상승시키고, 선박량 충격은 운임을 하락시킨다. 3) 물동량 충격, 선박량 충격, 운임 충격 중에서 운임 충격이 압도적으로 큰 것으로 나타났다. 4) 조정결정계수(adjR2)의 비교 결과, 선박량이 해운시장의 자체 변수(물동량, 선박량, 운임)에 의해 가장 잘 설명된다. 5) 공적분 벡터의 추정 결과, 물동량 증가는 운임을 상승시키고, 선박량 증가는 운임을 하락시킨다. 6) 교정 계수 추정 결과, 전기에 운임이 장기 균형보다 높으면 다음기에 하락 압력이 존재한다.

기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구 (Forecasting daily peak load by time series model with temperature and special days effect)

  • 이진영;김삼용
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.161-171
    • /
    • 2019
  • 일별 최대전력 수요 예측은 국가의 전력 수급운영에 중요한 과제로서 과거부터 다양한 방법들이 끊임없이 연구되어 왔다. 일별 최대전력 수요를 정확히 예측함으로써 발전설비에 대한 일일 운용계획을 작성하고 효율적인 설비 운용을 통해 불필요한 에너지 자원의 소비를 감소하는데 기여할 수 있으며 여름 겨울철 냉난방수요로 인해 발생하는 전력소비 과다로 인한 전력예비율 감소 문제 등에 선제적으로 대비할 수 있는 장점을 가진다. 이러한 일별 최대전력수요 예측을 위하여 본 논문에서는 Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, NNETAR 모형에 평일, 주말, 특수일에 대한 효과와 온도에 대한 영향을 함께 고려하여 다음날의 일별 최대전력을 예측하는 모형을 연구하였다. 본 논문을 통한 모형들의 예측 성능 평가 결과 요일, 온도를 고려할 수 있는 Seasonal Reg-ARIMA 모형과 NNETAR 모형이 이를 고려할 수 없는 다른 시계열 모형보다 우수한 예측 성능을 나타내었고 그 중 인공신경망을 활용한 NNETAR 모형의 예측 성능이 가장 우수하였다.

수치예보모형을 이용한 역학적 규모축소 기법을 통한 농업기후지수 모사 (A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model)

  • 안중배;허지나;심교문
    • 한국농림기상학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2010
  • 본 연구에서는 기상예측 모형을 이용하여 상세한 농업기후지수를 모사하고자 하였다. 이를 위해서 NCEP/NCAR 재분석 자료를 지역기후모형인 WRF의 초기 및 경계조건으로 하여 2002년 3월부터 7년간 상세한 기후 자료를 생산하고, 이렇게 구한 기후 자료를 통계적 보정을 거쳐 계통적 오차를 제거함으로써 그 기간의 기후를 재현하였으며 이를 이용하여 상세한 농업기후지수로 생산하였다. 수치 실험을 통해 생산된 상세 지역기후자료는 대순환 모형이 모사할 수 없는 남한의 복잡한 지형적 구조와 전체적인 관측 공간 패턴을 모사하였다. 통계적 보정은 모형결과가 관측에 비해 과소모사 되던 경향을 제거함으로써 보다 상세하고 관측에 가까운 시 공적 기후자료의 생산을 가능하게 하였다. 이렇게 모사된 기후 자료를 이용하여 식물온도 출 현초일, 작물온도 출현초일, 벼 이앙기의 저온 출현율, 종상일 등의 농업기후지수들에 대한 상세한 분포를 생산하였다. 보정 전 모형 결과에서는 계통적 오차인 모형의 기온 과소모사 경향에 의해 전반적인 유효온도와 종상일이 늦게 출현하였으며, 저온 출현율의 빈도가 높게 나타났다. 보정 후 모형 결과에서는 계통적 오차의 보정에 의해 유효온도 $10^{\circ}C$ 출현일을 제외한 유효 온도 출현일과 종상일이 앞당겨졌으며, 저온 출현일 빈도가 감소하였다. 보정 후 모형 결과에서 유도된 유 효온도 $10^{\circ}C$ 출현일은 보정 전 모형결과보다 3일 늦게 모사되고 있으나 보정 전 모형 결과에서 모사하지 못한 지역적 특징을 모사하고 있어 국지적으로 나타나는 작물온도 출현초일의 세부적인 패턴을 이해하는데 유용한 결과라고 판단된다. 모형의 결과로 유도된 농업기후지수는 복잡한 지역적 편차를 가지면서 정량적 정성적으로 관측에서 유도한 결과와 유사하게 나타났다. 반면 통계적 보정을 적용하여도 중부 논농사 지대의 작물온도 출현초일은 여전히 잘 모사되지 못하고 있는데 이는 모형의 결과가 계통적 오차 이외에도 또 다른 불확실성에 의한 문제를 내제하고 있음을 보여주는 결과이다. 향후 물리적 모수화 과정의 개선, 역학적 규모축소방법의 최적화 그리고 통계적 보정 방법의 다양한 적용을 통해 보다 향상된 농업기후지수를 생산할 수 있을 것으로 판단된다. 이러한 실험 결과는 농업 경영자들에게 상세 농업기후지수 분포의 이해를 도와줄 뿐만 아니라 본 연구의 실험 방식이 농업 예측에 활용될 경우 장기 예측 및 기후변화에 따른 예측을 위한 정보에 긴요하게 사용될 수 있을 것으로 생각된다.