• Title/Summary/Keyword: statistical confidence

Search Result 1,002, Processing Time 0.022 seconds

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

Kernel Inference on the Inverse Weibull Distribution

  • Maswadah, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.503-512
    • /
    • 2006
  • In this paper, the Inverse Weibull distribution parameters have been estimated using a new estimation technique based on the non-parametric kernel density function that introduced as an alternative and reliable technique for estimation in life testing models. This technique will require bootstrapping from a set of sample observations for constructing the density functions of pivotal quantities and thus the confidence intervals for the distribution parameters. The performances of this technique have been studied comparing to the conditional inference on the basis of the mean lengths and the covering percentage of the confidence intervals, via Monte Carlo simulations. The simulation results indicated the robustness of the proposed method that yield reasonably accurate inferences even with fewer bootstrap replications and it is easy to be used than the conditional approach. Finally, a numerical example is given to illustrate the densities and the inferential methods developed in this paper.

Multistage Point and Confidence Interval Estimation of the Shape Parameter of Pareto Distribution

  • Hamdy, H.I.;Son, M.S.;Gharraph, M.K.;Rashad, A.M.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1069-1086
    • /
    • 2003
  • This article presents the asymptotic theory of triple sampling procedure as pertain to estimating the shape parameter of Pareto distribution. Both point and confidence interval estimation are considered within the same inference unified framework. We show that this group sampling technique possesses the efficiency of Anscome (1953), Chow and Robbins (1965) purely sequential procedure as well as reduce the number of sampling operations by utilizing Stein (1945) two stages procedure. The analysis reveals that the technique performs excellent as far as the accuracy is concerned. The present problem differs from those considered by many authors, in multistage sampling, in that the final stage sample size and the parameter's estimate become highly correlated and therefore we adopted different approach.

Parametric inference on step-stress accelerated life testing for the extension of exponential distribution under progressive type-II censoring

  • El-Dina, M.M. Mohie;Abu-Youssef, S.E.;Ali, Nahed S.A.;Abd El-Raheem, A.M.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.269-285
    • /
    • 2016
  • In this paper, a simple step-stress accelerated life test (ALT) under progressive type-II censoring is considered. Progressive type-II censoring and accelerated life testing are provided to decrease the lifetime of testing and lower test expenses. The cumulative exposure model is assumed when the lifetime of test units follows an extension of the exponential distribution. Maximum likelihood estimates (MLEs) and Bayes estimates (BEs) of the model parameters are also obtained. In addition, a real dataset is analyzed to illustrate the proposed procedures. Approximate, bootstrap and credible confidence intervals (CIs) of the estimators are then derived. Finally, the accuracy of the MLEs and BEs for the model parameters is investigated through simulation studies.

Point and interval estimation for a simple step-stress model with Type-I censored data from geometric distribution

  • Arefi, Ahmad;Razmkhah, Mostafa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • The estimation problem of expected time to failure of units is studied in a discrete set up. A simple step-stress accelerated life testing is considered with a Type-I censored sample from geometric distribution that is a commonly used distribution to model the lifetime of a device in discrete case. Maximum likelihood estimators as well as the associated distributions are derived. Exact, approximate and bootstrap approaches construct confidence intervals that are compared via a simulation study. Optimal confidence intervals are suggested in view of the expected width and coverage probability criteria. An illustrative example is also presented to explain the results of the paper. Finally, some conclusions are stated.

Selection of Canonical Factors in Second Order Response Surface Models

  • Park, Sung H.;Seong K. Han
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.585-595
    • /
    • 2001
  • A second-order response surface model is often used to approximate the relationship between a response factor and a set of explanatory factors. In this article, we deal with canonical analysis in response surface models. For the interpretation of the geometry of second-order response surface model, standard errors and confidence intervals for the eigenvalues of the second-order coefficient matrix play an important role. If the confidence interval for some eigenvalue includes 0 or the estimate of some eigenvalue is very small (near to 0) with respect to other eigenvalues, then we are able to delete the corresponding canonical factor. We propose a formulation of criterion which can be used to select canonical factors. This criterion is based on the IMSE(=Integrated Mean Squared Error). As a result of this method, we may approximately write the canonical factors as a set of some important explanatory factors.

  • PDF

Bootstrapping Unified Process Capability Index

  • Cho, Joong-Jae;Han, Jeong-Hye;Jo, See-Heyon
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.543-554
    • /
    • 1997
  • A family of some capability indices { $C_{p}$(.alpha.,.beta.); .alpha..geq.0, .beta..geq.0}, containing the indices $C_{p}$, $C_{{pk}}$, $C_{{pm}}$, and $C_{{pmk}}$, has been defined by Vannman(1993) for the case of two-sided specification interval. By varying the parameters of the family various capability indices with suitable properties are obtained. We derive tha asymptotic distribution of the family { $C_{p}$(.alpha.,.beta.); .alpha..geq.0,.beta..geq.0} under general proper conditions. It is also shown that the bootstrap approximation to the distribution of the estimator $C_{p}$(.alpha., .beta.) is vaild for almost all sample sequences. These asymptotic distributions would be used in constructing some bootstrap confidence intervals.tervals.

  • PDF

Note on Working Correlation in the GEE of Longitudinal Counts Data

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.751-759
    • /
    • 2011
  • The method of generalized estimating equations(GEE) is widely used in the analysis of a correlated dataset that consists of repeatedly observed responses within subjects. The GEE uses a quasi-likelihood equations to find the parameter estimates without assuming a specific distribution for the correlated responses. In this paper we study the importance of specifying the working correlation structure appropriately in fitting GEE for correlated counts data. We investigate the empirical coverages of confidence intervals for the regression coefficients according to four kinds of working correlations where one structure should be specified by the users. The confidence intervals are computed based on the asymptotic normality and the sandwich variance estimator.

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring

  • Seo, Jung-In;Kim, Yongku;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • In this paper, we derive maximum likelihood estimators (MLEs) and approximate maximum likelihood estimators (AMLEs) of unknown parameters in a generalized half logistic distribution under Type-II hybrid censoring. We also obtain approximate confidence intervals using asymptotic variance and covariance matrices based on the MLEs and the AMLEs. As an illustration, we examine the validity of the proposed estimation using real data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE), bias, and length of the approximate confidence interval through a Monte Carlo simulation for various censoring schemes.