Journal of the Korean Statistical Society (2001), 80: 4, pp 585-595

Selection of Canonical Factors in Second Order
Response Surface Models!

Sung H. Park and Seong K. Han!

ABSTRACT

A second-order response surface model is often used to approximate the
relationship between a response factor and a set of explanatory factors. In
this article, we deal with canonical analysis in response surface models. For
the interpretation of the geometry of second-order response surface model,
standard errors and confidence intervals for the eigenvalues of the second-
order coefficient matrix play an important role. If the confidence interval for
some eigenvalue includes O or the estimate of some eigenvalue is very small
(near to 0) with respect to other eigenvalues, then we are able to delete the
corresponding canonical factor.

We propose a formulation of criterion which can be used to select canoni-
cal factors. This criterion is based on the IMSE(=Integrated Mean Squared
Error). As a result of this method , we may approximately write the canon-
ical factors as a set of some important explanatory factors.

Keywords: Canonical analysis, Canonical factor, Response surface model, Eigen-
value, Integrated mean squared error.

1. Introduction

Suppose that an experimenter is concerned with a system involving some re-
sponse 1 which depends on several independent factors &;1,&s,€3,- -+ ,&. In gen-
eral, the functional relationship between the independent factors and the mean
response can be written as

n = f(&,€,8&, &) (1)
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where the explicit form of f is unknown or extremely complicated. Response
surface methodology(RSM) often involves the approximation of f by a low or-
der polynomial in some region of the independent factors. Usually, the original
factors(¢’s) are coded to the design factors (z's) in order to locate the origin to
the center of region, with the latter normally being simple linear functions of the
former. In recent years, interests in RSM have been increased and several books
on this subject have been published by authors such as Myers(1976), Box and
Draper(1987), Khuri and Cornell(1987), Myers and Montgomery(1995) and so
on.
Let us consider the second order response surface model.

k k
n(z) = Bo + Z Bizi + Z Biiz? + Z Bijzix; (2)
i=1 i=1 i<j
which may be written in matrix form as
n(@) = Bo+zf+2'Bz (3)
= 248,
where,
z (1,22, , Tk)s
B (B, By, Br),
z; = (T1,T2, Tk, T, T3, , T, T1T2, "+, Th1Tk)
By = (BosBr, Bz B> BL, B3, BE BBy, Be-1Bk)

The coefficients in the second order models are estimated, by the method of

Bu 3Pz - LPu

3Bz B - 1Pok

B Bk - Pk
least squares from N observations on the response factor,
yu=7l(@‘_u)+€u, u=1727"',N (4)

where €] s are assumed to be uncorrelated and have zero means and constant
variance, 02 . The B f is then estimated by the method of least squares as follows.

B, =(X'X)"'X'y (5)
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where X is the N x m matrix whose ith row consists of 1 x m vector
'Y, = (1. s . . 2 2 e e ) .
(Lf)l - ( s Ti1y Ti2y - 3 Liky Tyt ° 5 Tiky Ti1T42, awzk—lmzk)

and y is a vector of N observations.

It is important to determine the nature of the local response surface. Canon-
ical analysis is a method of rewriting a fitted second order model in a form in
which it can be more readily understood. This is achieved by a rotation of axes
which removes all cross-product terms.

Consider a fitted second order model

§=PBo+2'B+2Bz. (6)
Let \i, ):2, -+, X be the eigenvalues of the symmetric matrix B, and my,mg:--,

my, the corresponding eigenvectors so that, by definition,
Bm; = Am; i=1,2,--,k (7)

If we standardize each eigenvector so that m} m] = 1 and if the k x k matrix M
has m; for its ith column, then M is an orthogonal matrix and the k equations
(7) may be written simultaneously as

BM = MA (8)
where A is a diagonal matrix. i.e.
A = dia’g():la X27 e axk)‘

Premultiplying by M'(= M~1) gives M'BM = A. By making use of the fact
that M'M = MM' = I, we can write the equation (6) as

§ = fo + (ZM)(M'B) + (2 M)(M'BM)(M'z) )
By adopting the notation
w = M(z-z,) (10)
where zs 18 the stationary point

we obtain the fitted second order model

9 = f+zB+2Bz
= ¢, +wAw

k
gs + Y Nw? (11)
i=1
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where 3, is the fitted response at the stationary point. i.e

. 5,1 s
¥s = Po + Eﬂ ﬁ .
We call this simplification the canonical form. The factors wy,ws, - , w are

called canonical factors. The canonical form nicely describes the nature of the
stationary point and the nature of the system around the stationary point.

2. Selection of canonical factors

2.1. Consequences of elimination of factors

Now a question is raised in using the canonical form. If the experimenter
decides the number of canonical factors to be used, does he or she have to include
every term in the canonical form to fit the response surface? It is possible to
obtain a "better” response in the sense of precision in y( (= y(__)) the least
squares estimator of 7n(z), by deleting some terms in the canonical form. We
have k canonical factors w;,ws, - - ,w and a dependent factor y. A linear model
that represents y in terms of &£ factors is

Yy = Ao+ /\1’w%j + Akw%j +¢€5 (12)

where €; ~ N(0,02). In matrix form, y=Wi+e
where € ~ N(0,021,). and

2 2
w1y w22>1 W
2 2
W = Wip W22 "+ Wi
2 2 2
Vowy, wy, - w,
Note that each w; is a function of 1, z2, - - - , z§ through the equation (10), and
the equation (12) is in fact the quadratic response surface model in z}, 23, - - , 7.

Also as shown in (11), the fitted value of y in (12) is the same as the original
original quadratic response surface model in (6).

When k is large enough, the equation (12) is lengthy and it is practically
not useful to use the full model. Instead of dealing with the full set of factors,
we might want to delete a number of factors in order to use a small number of
important factors for real application in practice. Then we want to construct an
equation with a subset of factors. Let us denote the set of factors retained by
wy, Wy, - ,Wp and those deleted by wyi1,wpyo,: -+ , wk.
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Instead of fitting (12), we fit the subset model

2 2
yJ = )\0 + Al’wlj +4 e )\p’ij + E; (13)
In matrix form,
Yp = Wphp + €€
where
2 2
1wy wy Wy
2 2
W = 1wy, wy Wp2
=
2 2 2
1 Wiy, Wi, - Wy,

We recall the following consequences of deletion of factors. The following
lemma is explained in detail in Hocking(1976) and Park(1977, 1998).
Lamma
If the matriz Var(\}) — ApA; s positive semi-definite, then

1. MSE();) — MSE(_);p) is positive semi-definite.

2. MSE(§) > MSE(§p)

Remark
i) A= %” } = (W'W)"'W'Y (full model)
—_—T
5, = (WiW,) Wiy (reduced model)
where W =[W, : W,
i) g=w' A (full model)
9p=u p_j\_p (reduced model)
where w= | “P ]
w,
where w, = (1,w}, w3, - ,wd), w, = (W2+1L,w?+2, - ,wi)

The motivation for elimination of canonical factors is provided by this lemma.
That is, even if A, #0, A, or n = E(y) may be estimated with smaller variance
using the subset model. o

However, the penalty is in bias. Lemma describes a condition under which
the gain in precision is not offset by bias, i.e. , the gain is still favorable to the
subset model.

Note thatVar(j) = MSE(§) and Var(X*,) = MSE()*,) since § and \*, are
unbiased estimators.
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2.2. Formulation of Q criterion

It is important to estimate response n = E(y) with smallest possible MSE at
any point of interest in the region R, in particular, at the stationary points( e.g.
maximum or minimum response point), since the estimation of the stationary
points with smaller MSE’s is often pursued in response surface experiment.

It was observed that if the matrix Var(A;) — A ), is positive semi-definite,
then it is possible to estimate parameters anTi_resporEas with a smaller MSE by
use of the subset model. If we write Var()\*) = 02H in which is the appropriate
submatrix of (W'W)~L, the condition is that the matrix o2H — Ar A/ is positive
semi-definite.

The parameters, o and ), are are unknown, but we assume that they may be
estimated from the current data using the full model. It may be argued that the
condition is too restrictive for response estimation since it applies for any point
over the region of interest. Therefore, as long as an average precision of estimation
is acceptable, the requirement that MSE(j) — MSE(yp), when integrated over
the region of interest, be positive is a reasonable choice as discussed in Park(1977).

Consequently, the proposed criterion for selection of factors is "select the p
factors” which maximize the quantity

Q= / Var(g) — MSE(g,)|dW (w) (14)
R

where W (w) is a weighting function that can be treated as a probability distri-
bution function on R. It can be readily shown that

Q = / Var(§) — Var(g,)}dW () — / [Bias(y,) W (w)
R R

o [Tr{(W'W) ™ M] = Tr((W,W,) " My
=X, [A’ MppA — 2AMy, + M)A,

where

M

/ ww'dW(w), M;; = / w; wy'dW (w),
R RT —
A = (W;Wp)_IWI;WT and Tr denotes trace.

After replacement of the parameters o and Ar by their estimates, the quantity
to be maximized is

Py

0 = o2 [Tr[(W’W)“lM] - Tr[(W,;W,,)—lM,,p]]
— XN [A'MppA — 2AM, + My, )), (15)
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Therefore, in essence, we are looking for a subset of polynomial terms whose
gain in precision is not offset by the squared bias over the whole region of interest,
R.

3. An example

3.1. Canonical analysis

In this example (Box and Draper, 1987), the chemical process under study
had two stages, and five factors considered were stage one temperature (z1), stage
one reaction time (z;), stage one concentration (z3), stage two temperature (z4),
and stage two reaction time (x5). The data set is listed in Table 1.

The objective of the experiment is to maximize the yield of chemical reaction.
A preliminary application of the steepest ascent procedure had brought the ex-
perimenter close to a near-stationary region, and a second-order model was now
to be fitted and examined.

At first, we deal with canonical analysis in second-order response surface mod-
els. From canonical analysis, if we find very small or non-significant eigenvalues,
then we delete the corresponding canonical factors and refit the reduced model.

The second-order response surface model is fitted as follows.

§ = 68.72+3.26x) + 158z + 1.1673 + 3.47z4 + 1.4925 — 1.6127
—1.352% — 2.5822 — 2.34x% — 1.4222 — 1.90z 29 + 2.10z, 23
—0.35z1z4 — 0.04z125 + 0.60x2203 — 0.172224 — 1.10z915 — 3.552314
—0.75z3z5 + 0.40x 425

From the canonical analysis result as shown in Table 2, the second-order
response surface model can be represented as canonical factors as follows.

g = 72.51 — 4.46w? — 2.62w? — 1.78w?2 — 0.40w? — 0.04w?
where,

w; = —0.28(z1 — 2.50) — 0.14(z3 + 1.09) + 0.74(z3 — 1.24)
+0.59(z4 + 0.30) + 0.03(z5 — 0.54)

wy = 0.64(z1 — 2.50) + 0.60(z3 + 1.09) + 0.003(z3 — 1.24)
+0.43(z4 + 0.30) + 0.21(z5 — 0.54) (16)
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Tablel: Data of a chemical process experiment

Run number z Z2 z3 T4 s Response, y
1 -1 -1 -1 -1 1 49.8
2 1 -1 -1 -1 -1 51.2
3 -1 1 -1 -1 -1 50.4
4 1 1 -1 -1 1 52.4
5 -1 -1 1 -1 -1 49.2
6 1 -1 1 -1 1 67.1
7 -1 1 1 -1 1 59.6
8 1 1 1 -1 -1 67.9
9 -1 -1 -1 1 -1 59.3
10 1 -1 -1 1 1 70.4
11 -1 1 -1 1 69.6
12 1 1 -1 1 -1 64.0
13 -1 -1 1 1 53.1
14 1 -1 1 1 -1 63.2
15 -1 1 1 1 -1 58.4
16 1 1 1 1 64.3
17 3 -1 -1 1 1 63.0
18 1 -3 -1 1 1 63.8
19 1 -1 -3 1 1 53.5
20 1 -1 -1 3 1 66.8
21 1 -1 -1 1 3 67.4
22 1.23 -056 -0.03 069 0.70 72.3
23 0.77 -082 148 188 0.77 57.1
24 169 -030 -1.55 -0.50 0.62 53.4
25 253 064 -010 151 112 62.3
26 -0.08 -1.75 0.04 -0.13 0.27 61.3
27 0.78 -0.06 0.47 -012 232 64.8
28 1.68 -1.06 -0.54 150 -0.93 63.4
29 2.08 -2.05 -0.32 100 1.63 72.5
30 038 093 025 038 -0.24 72.0
31 0.15 -0.38 -1.20 1.76 1.24 70.4
32 230 -074 113 -0.38 0.15 71.8

wy = —0.25(z; — 2.50) + 0.25(z2 + 1.09) + 0.23(z3 — 1.24)

— 0.38(z4 + 0.30) + 0.82(z5 — 0.54)

wy = 0.37(z; — 2.50) — 0.73(z7 + 1.09) — 0.19(z3 — 1.24)
+ 0.22(z4 + 0.30) + 0.50(z5 — 0.54)

ws = 0.56(z; — 2.50) — 0.16(z5 + 1.09) + 0.60(z3 — 1.24)
— 0.52(z4 + 0.30) — 0.19(z5 — 0.54)



Selection of Canonical Factors 593

Table 2: Canonical analysis result

Canonical Analysiz of Response Surface

Stationary

Factor point

X1 2,495548

X2 -1, 093360}

X3 1,243882

X4 -0, 304204

X5 0,535206

Predicted value at stationary point 72.509519
Eigenvectors
Eigenvalues X1 X2 X3 X4 X5

-0,040525 0,558012 -0,156681  0,601001 -0,518112  -0,185556
-0,397526  0,368751 -0, 730077 -0,188156 0,221910 0.496351
-1,782351 -0,254125  0,254818 0 225386 -0 383098 0, 820320
-2,624728  0_638495 0,598723  0,003226 0.433868 0.213550
-4 460949 -0,283532 -0,137977  0_743361 0,589330 0,026008

3.2. Factor selection and its results

For the case of including the canonical factors w?, w3, w3, w3 (p = 4), we obtain
the reduced second-order response surface model in canonical factors as follows.

§ = 72.21 - 4.48w? - 2.61w3 — 1.79w? — 0.39w?

O = 7.34

For the case of including the canonical factors w?, w3, w?(p = 3) we can

similarly obtain the reduced second-order response surface model in canonical
factors as follows.

g = 7219 — 4.43w? — 2.650w2 — 1.72w?

Q = -123.27

Similarly we can obtain the results for the cases of p = 2 and p = 1, and they
are summarized in Table 3.
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Table 3: Criteria of factor selection

Number of selected factor criterion

Q R2
p=5(w? ~ w?) 0 0.986
p=4(w? ~ w3?) 7.34 0.985
p=3(w? ~ w?) -123.37 | 0.958
p=2(w? ~ w?) -1238.93 | 0.884
p=1(w?) -4198.13 | 0.463

Now we want to choose p factors to maximize @ in (15). Table 3 shows that
only p = 4 gives a positive value for (), which means that p = 4 is the most
favorable number of selected factors for the model. Consequently, we can delete
the fifth canonical factor, which means that, we are able to select canonical factors
wy, We, w3, Wq.

From the equation (16), we might approximately write the canonical factors
as

w, = 0.74(z3 — 1.24) + 0.59(z4 + 0.30)

wy = 0.64(z; — 2.50) + 0.60(z2 + 1.09)

wy = 0.82(z5 — 0.54)

wy = —0.73(z2 + 1.09)

ws = 0.56(z; — 2.50) + 0.60(z3 — 1.24) — 0.52(z4 + 0.30)

Note that the factor w; influences § most, which means that in order to
maximize g, we need to increase factors (z2,z3), in the direction of 0.74(z3 —
1.24) + 0.59(z4 + 0.30). The factor wy followed by w; influences § next, which
means that in order to maximize §, we need to increase the factors (z1,z3), in
the direction of 0.64(z; — 2.50) + 0.60(z2 + 1.09). We can similarly interpret the
results for the remaining w3, w4, and ws. These results can be usefully applied
in industry.
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