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Abstract

A family of some capability indices {C,(a,8);a > 0,8 > 0}, con-
taining the indices C,, Cp, C,,., and Cpmk, has been defined by
Vinnman(1993) for the case of two-sided specification interval. By
varying the parameters of the family various capability indices with
suitable properties are obtained. We derive the asymptotic distribution
of the family {é,,(a, B8);a>0,8> 0} under general proper conditions.
It is also shown that the bootstrap approximation to the distribution of
the estimator (3’,,(0:, B) is valid for almost all sample sequences. These
asymptotic distributions would be used in constructing some bootstrap
confidence intervals.
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1. INTRODUCTION

Some process capability indices(PCls) are used to determine whether a
production process is capable of producing items within a specified tolerance.
They are considered as a practical tool by several advocates of statistical
process control in industry. The three most widely used capability indices in
industry today are

_USL—LSL  _ min(USL — -~ LSL)

o 6o ph = H

30

C

and
USL - LSL
C =

pm 6 (——-——02 + (u‘ — T)2

Here USL and LSL denote the upper and lower specification limits for the
process, p and o denote the mean and standard deviation of the process
distribution, and 7' denotes the target value for the process. Chan, Xiong and
Zhang(1990) have derived the asymptotic distributions for three estimators
of capability indices mentioned above. Also, Pearn, Kotz and Johnson(1992)
introduced C,,,\, as

min(USL — p,u — LSL)

3ot +(p—T)*

The family of capability indices, depending on two non-negative parame-
ters o and 3, is defined as follows(Vannman, 1993):

Cpm E =

d—alp— M|
3/02 + B(u — T)?

where d = (USL — LSL)/2, i.e., half the length of the specification interval,
M = (USL + LSL)/2, i.e., the mid-point of the specification interval. By
varying the parameters of the family various indices with different properties
can be obtained. By letting a=0 or 1 and 3 = 0 or 1 in unified process
capability index (1.1), we obtain four basic indices mentioned above, i.e.,
C,(0,0)=0C,, C,(1,0) =Cy, C,(0,1) =C,,,., C,(1,1) = Cppi-

One reason for introducing capability indices like C,(a, 8) was to achieve
sensitivity for departures of the process mean p from the target value 7. If
it is of interest to have a capability index that is very sensitive with regard
to departure of the process mean i from the target value T', then the values
of o and 3 should be large. See Vannman and Kotz(1995).

C, (e, B) = (1.1)
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However, studying the estimator C‘,,(a, 3) of C,(a, 3) and taking its statis-
tical properties into account, Vannman and Kotz(1995) have suggested that
choosing large values of & and g is not desirable, since in that case the bias
and the mean square error of the estimator could be large.

On the other hand, Efron(1979) introduced the bootstrap method which
is one of the most popular methods in statistics. Bickel and Freedman(1981)
have shown that the bootstrap works for means, and hence for pivotal quan-
tities of the familiar ¢-statistics sort; they have made an extension to multi-
dimensional data. Franklin and Wasserman(1991, 1992) should be regarded
as the pioneers of application of bootstrap methodology in estimation of ca-
pability indices. The boostrap method achieved remarkably rapid accep-
tance among statistical practitioners since then. It is not until very recently
that its application in the field of PCIs has been developed. Also, Nam
and Park(1995) have discussed some bootstrap confidence intervals for PCIs.
However, the relevance of asymptotic theory to PCIs’ bootstrap applications
has not been explored yet(Rodriquez; 1992).

In this article, we derived the asymptotic distribution of the family {(f',, (a,
3); a > 0,3 > 0} under the condition that the fourth central moment about
p of the process distribution exists. It is shown that the bootstrap approx-
imation to the distribution of the estimator C,,(a 3) is valid for almost all
sample sequences. The asymptotic distributions will be used in constructing
some bootstrap confidence intervals in future study.

2. ASYMPTOTIC DISTRIBUTION

Let X, X2, ---, X, be independent random variables with common
distribution function F. Assume that F has finite mean x and variance

, both unknown. The conventional estimate for p is the sample average,
denoted here by X. To analyze the sampling error in X, it is customary to
compute the sample variance S?, defined as

S? =

By the Theorem of Chan et al.(1990), the distribution of the pivotal quantity

Q" = \/FL(CA'P - Cl')/Sp

ot

C
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tends weakly to V(0,1) where Sl'f is the plug-in estimator of the capability
index C,’s variance o’(See Chan et al.(1990)). So, in this situation, the
asymptotics are known. More generally, there is some theoretical interest in
seeing the asymptotics for the family {YCA',,(a, B);a>0,8> 0}.

First, consider the plug-in estimator (A«‘,,(a, 3) of unified process capability
index C,(a. 3) as follows:

\ d—alX - M
Cy(a,B) = | = | (2.1)
3\/S2 + (X - T)?
where d = {SL-LS5L -y - LSLAUSL  Then we obtain the following relation
) )
with some reasonable estimators:
A d A
C, = 35 =_C,,(0, 0),
- d—|X -M| -
Cp = 35 = C,(1,0),
C,n = d =C,(0,1)
pm 2\/52 n (X _ T)2 P\ L
. d—|X - M A
Cpmk = | = l = Cp(l, 1)
2/52 + (X - T)?
Theorem 1. If uy = E(X — p)! exists, then
N(0,02 ) for p< M
Va(Cy(a,8) = Cyla,8) 5 § —5 — & + St for p=M
N (0, ‘73’.,{5) for p>M

where 72 = o+ B(p — T)?,
o2, = a'%a, (Y,Z)~ BN((0,0),%), o2, =DbTb,
, (_a_+ﬂ(T—u){d—a(M—u)} _d—a(M—u))

a =
3Tﬂ 37’3 67—3
2
g U3 3
T = . uz = E(X —p),
< s s — o ) p3=E(X —p)

b o= (- BT -pldtaM —p)}  dto(M-p)
o 374 373 67'{:,3 '



Bootstrapping Unified Process Capability Index 547

Proof. The proof is obtained by applying Chan et al.(1990) and considering

the function g(u,v) as follows :
d— am
3\/v+ Bu—-T)2
Of course, the result in case of 4 = M is calculated with some limit theorems.

Corollary 1 (Chan et al. (1990).

g(u,v) =

(2.2)

“ p 4 d2

(@  VA(C, =€) 4 N(O,02), where o2 = =208
N(07 Uﬁk)s p< M
(b) \/E(Cpk - Cpk) ‘i) —u — 4 M= M

30 6ot ?

N(O: al?;a)’ p>M

1 pg{d— (M —p)} | (4 —0*){d— (M - p))*
2 __
where o, = 9" 951 + 3650
y _ 1 pe{d+ (M —p)}  (pa—o){d+ (M - p)°
kg 954 3605

(C) \/E(C’\’pm - Cpm) _d') N (01 02 )’

pm

d? {o?(u — T)? = pa(p = T) + H(pua — o)}

2 _
where o, = 975
=0+ (u - T)*
Corollary 2.
N(0,02,,) for p< M
\/T—I‘(Cpmk - Cpmk) Ll) _g_l - 1611—_"_23' + u:‘l%_—“—) for H = M
N(0,02,;) for p>M
where
1
ot = o5 [I77+ (T = w)d = M+ w)0” = pg(d = M + p)[r*+

(@~ M+ )(T = )] + (s — 0*)(d = M + )
(Y,Z) ~ BN((0,0),%)
Tyt = 9% [[7* + (6 = T)(d ~ s+ M)P? + pio(d = s+ M) [+

(8= s+ MY = T+ 7 (s — 0*)d = s+ MY
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3. BOOTSTRAP APPROXIMATION

3.1. Bootstrap Algorithm

Efron(1979) discusses the method of bootstrap for setting confidence inter-
vals and estimating significance levels. This method consists of approximating
the distribution of a function of the observations and the underlying distri-
bution, such as a pivot, by what Efron calls the bootstrap distribution of this
quantity. This distribution is obtained by replacing the unknown distribution
by the empirical distribution of the data in the definition of the statistical
function, and then resampling the data to obtain a Monte Carlo distribu-
tion for the resulting random variable. This method would probably be used
in practice only when the distributions could not be estimated analytically.
However, it is of some interest to check that the bootstrap approximation
is valid in situations which are simple enough to handle analytically. Efron
gives a series of examples in which this principle works, and establishes the
validity of the approach for a general class of statistics when the sample space
is finite.

Let F, be the empirical distribution of X;, X, -+, X,, putting mass
1/n on each X,. The bootstrap algorithm goes as follows:

e Step 1 : Given x, = (X, X2, -, X,) , let X;, X5, -, X} be condi-
tionally independent, with common distribution F,.

*
m?

e Step 2 : From the bootstrap sample X[, X;,---, X, compute the sam-

ple mean X * and sample variance S*2.

™m

1 *
m 2 X0
S*Z — 1 i(x,* __)Z—*)Q

m — 1

X =

e Step 3 : Compute the bootstrap plug-in estimator of unified process
capability index C,(a, 8) as follows:

d—a|X* — M|
3\/52* + /(X —T)

CHa,B) = (3.1)

We obtain four bootstrap estimators from (3.1).

Sox d -
c, = 35*:Cp(0,0)
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- d - IX* B ‘Ml -
C[ll« - T = (/[)(1?0)
- d e
Cl’”' = — = C[; (07 1)
3\/8*2 + (X+ —T)?
d—|X* = M| A

3\/5*2 + (X* _T)Q

3.2. Asymptotic Bootstrap Distribution

We allow the resample size m to differ from the number n of data points,
to estimate the distribution of the bootstrap pivotal quantity, say, Q* =

m

\/5{((:*; ~C,)/S?, where S»? is the bootstrap version of the plug-in estimator

p?
SE of the variance 03.

In the resampling, the n data points X;, X,,---, X, are treated as a pop-
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ulation, with distribution function F, and mean X:; and X* is considered as -

an estimator of X. First, take m = n. The idea is that the behavior of the
bootstrap pivotal quantity Q* mimics that of Q,. Thus, the distribution of
Q,, could be computed from the data and used to approximate the unknown
sampling distribution of Q,. Or even more directly, the bootstrap distribu-
tion of / H((:”;‘ — C,) could be used to approximate the sampling distribution
of v/n(C, — C,). Either approach would be lead to confidence intervals for
C,, and would be useful if the bootstrap approximation were valid.

More generally, we have an interest in constructing some bootstrap con-
fidence intervals for the index C,(a, 3). That is, we show that the bootstrap
approximation to the distribution of the estimator C,(a, 8) is valid for almost
all sample sequences.

Lemma 1. Along almost all sample sequences given X, = (X1, X9, -+, X,),
as m and n tend to oo:

2

Vm(X* — X,82 — §9)|X, 5 BN ((0,0), ( ool ))

H3 By — 0

Proof. Let F, be the empirical distribution of (;I‘,) (E'), e (;) Given

()’fl‘z) (i((;)’ SR (’;2), let ()‘;(l);) (;:;2), e (;2) be conditionally independent,
with common distribution F,.

With Bickel and Freedman(1981:Theorem 1 and Theorem 2) and Mal-
lows(1972), we obtain the following limiting distribution. As n and m tend
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to XX
|

n

N PR Qs a
Vi (.\" -\N.— S.\'," -

m

i A\ ,'-’) ‘1

il

d . 0" uy + 2u0”
5 BA ((0. 0). ( py 4 200 oy + dpupg + dpto? — ot )) (3.2)

Hence, we obtain Lemma 1 by (3.2) and simple calculations.

Lemma 2. Assume that function g(u,v) is differentiable. Along almost all
sample sequences given X, = (X;, X2,--+, X, ), as m and n tend to oco:

vm (g(X*,5") - g(X,5%))|X, > N(0,D'ED)
where D' = ( i)_”_gl‘L.)l;:.a2 MIJLH: ) # (O~ 0)

du v

Proof. The Lemma 2 follows from Lemma 1 and the Theorem A(p.122) of
Serfling(1980).

Theorem 2. Along almost all sample sequences given X, = (X, Xo,--+, X,),
as m and n tend to oc:

N(0,02 ) for p< M
VI(C(a, 8) = Cyla, B)IX, 5 { —5-l — & + 0t for p=M
N(0,67 ) for p>M

under the same conditions as Theorem 1.

Proof. The proof is obtained by applying Lemma 1 and Lemma 2 in case
of u < M or p > M. Also, the result of the case 4 = M is derived by
the following calculations with some limit theorems containing the Slutsky’s
theorem. We consider the case 4 = M as follows:

Vi (G5(,8) - G, 9) o

d—alX*— ) d—a|X —pl

- vm (3\/.5"2+{1(,\7‘-—’I')2 3\/sz+a(,\7-'/')2) Ix»
— \/E ( o _ o ) IXn

34/ S 248(X-=T)2  3\/St+B(X-T)2

—a\/ﬁ( St I &Y ) xs

3V S 248(X*-T) 3/ SE+B(X-T)?
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The first term is calculated as follows:

. d d ) '
" (3\/5*2 FB(X -T)? 3,/82 + (X - T)? X
_/md <\/S*2 AR -1y — [T+ A(X - T)z)
N 3Y/S° + B(X* — T)2/S2 + B(X ~ T2 ‘X"
—y/md[S? - S+ B(X* —T + X - T)(X* - X)]
3/52 + B(X* — T)2,/S2 + B(X — T)2(,/5°2 + B(X* - T)2 + VS2+B(X - T)?) X

dZ dp{(T — )Y
A 22 La_“_)_ asm — oo andn — o0 (3.3)
673 37

where (Y,Z) ~ BN((0,0),%), 73 = 0%+ B(p — T)?
Also, the second term can be calculated as follows:
|X* - pl _ X — u
3\/82+ (X" —T)2 3,/82+8(X - T)?
—avm |I%° = w57+ BX ~ 1) - 1X - uly/5T+ 5% - TF]

B 3y/S°2 + B(X* - T)2\/% + B(X — T)? ’X"

—avm(

) [Xn

d alY|
—

as m — 00 and n — 00 (3.4)
37'/1

by rationalizing the numerator and applying some limit theorems to it. Two
results (3.3) and (3.4) imply Theorem 2 for the case © = M immediately.
This completes the proof. Of course, these limiting distributions are identical
with those of Theoreml.

Corollary 3 (Kim and Cho(1995)). Along almost all sample sequences given
X, = (X1,X2,--+,X,), as n and m tend to oo:

(a’) \/—77—7:(6'; - éP)IXn _d) N(O, 03)
N(0,0%) for p<M
(d)  Vm(C;, - Cp)lX, 4 __l;_al - & for pu=M
N(0,6%) for p>M

(C) \/E(é’;m - él)7'l)lel LI) N(O? 02

pm
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Corollary 4. Along almost all sample sequences given X, = (X, Xy, -+, X,,),
as m and n tend to oc:

N(0,02,,) for p< M
\/E(C;,,, [ Cpm l«)an LI) _|3)_7I - éITL; + i%—r_lﬁ for M = M
N(O,af);” L) for u>M

2 2

Since the variance o, is a continuous function of ¢ and iy, we can easily
show the following result.

Remark. Along almost all sample sequences given X, = (X, Xa, -+, X,),
as n and m tend to oco:

S, — o, in conditional probability: that is, for arbitrary positive ¢ as m
and n tend to oo,

P {15; o> e

X,,} — 0 a.s.

For other cases, similar results hold.

4. FURTHER TOPICS

The consistency of the bootstrap(Theorem 1 and Theorem 2) guarantees
that some approximate statistical inferences for the family of unified process
capability index {C,(a, 8);a > 0,3 > 0}, containing the indices C,, C,;, and
C,m, can be performed.

In particular, these capability indices are widely used to estimate whether
a process is capable. Recently, techniques and tables were developed to con-
struct lower 95% confidence limits for each index. These techniques assume
the underlying process is normally distributed. But some processes that are
modestly nonnormal do occur and can be hard to detect. Therefore, some
nonparametric bootstrap lower confidence limits(Standard bootstrap, Per-
centile bootstrap, Bias-corrected percentile bootstrap, Studentized bootstrap,
Hybrid bootstrap, Backward bootstrap, Bias-corrected bootstrap, Acceler-
ated bias-corrected bootstrap, Coverage-corrected percentile bootstrap(Hall
(1986, 1988), Franklin and Wasserman(1992)) will be compared for each of
these capability indices. Then we will choose better nonparametric bootstrap
confidence intervals for these capability indices.
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