• 제목/요약/키워드: static responses

검색결과 414건 처리시간 0.026초

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

수평.상하 지진을 받는 아치구조물에 대한 등가정적지진력 제안 (A Proposal of Quasi Static Seismic Force for Arches subjected to both the Horizontal and Vertical Seismic Wave)

  • 정찬우
    • 한국공간구조학회논문집
    • /
    • 제7권6호
    • /
    • pp.103-110
    • /
    • 2007
  • 일반적인 각형 라멘 구조물에 있어서, 상하지진동은 수평지진동에 비하여 구조물에 미치는 영향이 작다고 간주되어, 내진설계에 있어서는 수평지진동만을 고려하는 것이 일반적이다. 그러나, 공간구조물에서는 수평지진동에 의해 수평방향뿐만 아니라 연직방향으로도 구조물의 동적응답이 크게 증폭되며, 또한 상하지진동에 의해서도 연직방향뿐만 아니라 수평방향으로도 구조물의 동적응답이 크게 증폭되는 특성을 가지고 있으므로, 수평 상하 양방향의 지진동을 모두 고려할 필요가 있다. 본 논문에서는 공간구조물의 가장 간단한 구조형식인 아치를 대상으로, 수평 상하지진동의 동시입력에 대한 순간가속도 응답배율의 특성을 고찰하였다. 또한, 지진동의 단독입력시의 등가정적지진력을 이용하여, 지진동의 동시입력에 대한 등가정적지진력을 제안하였다.

  • PDF

부방향 동압력을 이용한 압전형 압력센서의 교정기법 (A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure)

  • 김응수
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Pushover analysis of gabled frames with semi-rigid connections

  • Shooshtari, Ahmad;Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1557-1568
    • /
    • 2015
  • The nonlinear static analysis of structure, which is under the effect of lateral loads and provides the capacity curve of the structure, is defined as a push-over analysis. Ordinarily, by using base shear and the lateral displacement of target point, the capacity curve is obtained. The speed and ease of results interpretation in this method is more than that of the NRHA responses. In this study, the nonlinear static analysis is applied on the semi-rigid steel gabled frames. It should be noted that the members of this structure are analyzed as a prismatic beam-column element in two states of semi-rigid connections and supports. The gabled frame is modeled in the OpenSees software and analyzed based on the displacement control at the target point. The lateral displacement results, calculated in the top level of columns, are reported. Furthermore, responses of the structure are obtained for various support conditions and the rigidity of nodal connections. Ultimately, the effect of semi-rigid connections and supports on the capacity and the performance point of the structure are presented in separated graphs.

유한요소해석을 이용한 3 차원 전차선로의 동특성 분석 (Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method)

  • 이규호;조용현;정진태
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

On the improvement of inelastic displacement demands for near-fault ground motions considering various faulting mechanisms

  • Esfahanian, A.;Aghakouchak, A.A.
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.673-698
    • /
    • 2015
  • This paper investigates inelastic seismic demands of the normal component of near-fault pulse-like ground motions, which differ considerably from those of far-fault ground motions and also parallel component of near-fault ones. The results are utilized to improve the nonlinear static procedure (NSP) called Displacement Coefficient Method (DCM). 96 near-fault and 20 far-fault ground motions and the responses of various single degree of freedom (SDOF) systems constitute the dataset. Nonlinear Dynamic Analysis (NDA) is utilized as the benchmark for comparison with nonlinear static analysis results. Considerable influences of different faulting mechanisms are observed on inelastic seismic demands. The demands are functions of the strength ratio and also the pulse period to structural period ratio. Simple mathematical expressions are developed to consider the effects of near-fault motion and fault type on nonlinear responses. Modifications are presented for the DCM by introducing a near-fault modification factor, $C_N$. In locations, where the fault type is known, the modifications proposed in this paper help to obtain a more precise estimate of seismic demands in structures.

단순화 해석 방법에 따른 지하공동구 지진 응답 산정 비교 (Comparison of Seismic Responses of Underground Utility Tunnels Using Simplified Analysis Methods)

  • 김대환;임영우;서현정;이혜린
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.205-213
    • /
    • 2024
  • In the seismic evaluation of underground utility tunnels, selecting an analytical method is critical to estimating reasonable seismic responses. In simplified pseudo-static analysis methods widely applied to typical seismic design and evaluation of underground tunnels in practice, it is essential to check whether the methods provide valid results for cut-and-cover tunnels buried in shallow to medium depth. The differences between the two simplified pseudo-static methods are discussed in this study, and the analysis results are compared to those obtained from FLAC models. In addition to the analysis methods, seismic site classification, overburden soil depth, and sectional configuration are considered variables to examine their effects on the seismic response of underground utility tunnels. Based on the analysis results, the characteristics derived from the concepts and details of each simplified model are discussed. Also, general observations are made for the application of simplified analysis methods.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

정전기력을 받는 마이크로 외팔보의 동적 해석 (Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces)

  • 정강식;문승재;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.846-851
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.