• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.026 seconds

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Chord rotation demand for effective catenary action of RC beams under gravitational loadings

  • Tsai, Meng-Hao
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.327-345
    • /
    • 2016
  • Many experimental and analytical studies have been conducted with beam-column subassemblages composed of a two-span beam to investigate the progressive collapse resistance of RC frames. Most study results reveal a strength-decreased transition phase in the nonlinear static load-deflection curve, which may induce dynamic snap-through response and increase the chord rotation demand for effective catenary action (ECA). In this study, the nonlinear static response is idealized as a piecewise linear curve and analytical pseudo-static response is derived for each linearized region to investigate the rotation demands for the ECA of the two-span RC beams. With analytical parameters determined from several published test results, numerical analysis results indicate that the rotation demand of 0.20 rad recommended in the design guidelines does not always guarantee the ECA. A higher rotation demand may be induced for the two-span beams designed with smaller span-to-depth ratios and it is better to use their peak arch resistance (PAR) as the collapse strength. A tensile reinforcement ratio not greater than 1.0% and a span-to-depth ratio not less than 7.0 are suggested for the two-span RC beams bridging the removed column if the ECA is expected for the collapse resistance. Also, complementary pseudo-static analysis is advised to verify the ECA under realistic dynamic column loss even though the static PAR is recovered in the nonlinear static response. A practical empirical formula is provided to estimate an approximate rotation demand for the ECA.

The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray (고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

Characteristics of Sitting Balance and Trunk Muscle Endurance in Patients With Adolescent Idiopathic Scoliosis

  • Shin, Seung-Sub;Woo, Young-Keun
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.35-43
    • /
    • 2007
  • The purpose of this study was to compare the static balance in a sitting position between a group with adolescent idiopathic scoliosis (AIS) and a normal aged-matched group. Forty-nine subjects were included in this study. Thirty-one healthy subjects and eighteen AIS subjects were participated. Each group was tested with the Lumbar Trunk Muscle Endurance Test (LTMET) and Balance Performance Monitor (BPM). The parameters for static balance were sway area, sway path, mean balance, maximum velocity, anterior-posterior angle, and left-right angle of each group with eyes opened and closed. Results from the LTMET showed significantly more increase in the normal group than in the AIS group in the flexor and extensor endurance. The BPM tested showed significantly difference beteen the groups in parameters of sitting balance such as maximum velocity and anterior-posterior sway angle. For the AIS subjects, there were no significant differences in all parameters of sitting balance between eyes opened and eyes closed. In comparisons of the groups with eyes opened there were no significant differences in all parameters of sitting balance. In comparisons of the groups with eyes closed there were significant differences in the sway area, maximum velocity, anterior-posterior sway angle and left-right sway angle. These results suggest that the AIS group relies much more on proprioception than on vision, and develops compensatory passive postures of the spine. Further study is needed to measure many AIS patients with morphologic and electromyographic data for clinical application.

  • PDF

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

Detection of a concentrated damage in a parabolic arch by measured static displacements

  • Greco, Annalisa;Pau, Annamaria
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.751-765
    • /
    • 2011
  • The present paper deals with the identification of a concentrated damage in an elastic parabolic arch through the minimization of an objective function which measures the differences between numerical and experimental values of static displacements. The damage consists in a notch that reduces the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness of the structure. The analytical values of static displacements due to applied loads are calculated by means of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental data are used to study the inverse problem and investigate whether a unique solution can occur or not. Various damage intensities are considered to assess the reliability of the identification procedure. Then, the identification procedure is applied to an experimental case, where displacements are measured on a prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to those obtained by means of a dynamic identification technique performed on the same structure.

Static Friction Compensation for Enhancing Motor Control Precision (모터 제어 정밀도 향상을 위한 정지 마찰력 보상)

  • Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.180-185
    • /
    • 2014
  • DC motor is a representative electric motor commonly utilized in various motion control fields. However, DC motor-based motion control systems suffer from degradation of position precision due to nonlinear static friction. In order to enhance control precision, friction model-based compensators have been introduced in previous researches, where friction models are identified and counter inputs are added to control inputs for cancelling out the identified friction forces. In this paper, a static friction compensator is proposed without use of a friction model. The proposed compensation algorithm utilizes internal state manipulation to generate compensation pulses, and related parameters are easily tuned experimentally. The proposed friction compensator is applied to a DC motor-based motion control system, and results are presented in comparison with those without a friction compensator.

Analysis of the Fluid Dynamic Bearings with Curve Surfaces in the Spindle Motor of a Computer Hard Disk Drive (컴퓨터 하드 디스크 드라이브 스핀들 모터에 사용되는 곡면 유체 동압 베어링 해석)

  • Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.401-406
    • /
    • 2008
  • This paper proposes a method to calculate the static characteristics of the FDBs with the curved surface. The general Reynolds equations are derived for the curved surfaces in the ${\theta}s$ plane. And the Reynolds equation is transformed to the finite element equations by considering the continuity of pressure and flow at the interface between the curved, journal and the thrust bearings. It also includes the Reynolds boundary condition in the numerical analysis to simulate the cavitation phenomenon. The static characteristics of the coupled journal and conical bearings were investigated due to the variation of conical angle. It shows that the conical angle is one of the important design parameters affecting the static and dynamic characteristics of FBBs.

  • PDF

Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting (유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구)

  • 정영수;이강균;한기훈;이대형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.