• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.031 seconds

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes

  • Motlagh, Ali Tafreshi;Ghanbari, Ali;Maedeh, Pouyan Abbasi;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.687-699
    • /
    • 2018
  • This paper investigates the pseudo-static analysis of reinforced slopes with geosynthetics under the influence of the uniform surcharge to evaluate the maximum tensile force of reinforcements. The analytical approach has basically been used to develop the new practical procedure to estimate both tensile force and its distribution in the height of the slope. The base of developed relationships has been adapted from the conventional horizontal slice method. The limit equilibrium framework and the assumptions of log-spiral failure surface have directly been used for proposed analytical approach. A new analytical approach considering a single layer of non-cohesion soil and the influence of uniform surcharge has been extracted from the 5n equation and 5n unknown parameters. Results of the proposed method illustrated that the location of the surcharge, amount of internal friction and the seismic coefficient have the remarkable effect on the tensile force of reinforcement and might be 2 times increasing on it. Furthermore, outcomes show that the amount of tensile force has directly until 2 times related to the amount of slope angle and its height range. Likewise, it is observed that the highest value of the tensile force in case of slope degree more than 60-degree is observed on the lower layers. While in case of less degree the highest amount of tensile force has been reported on the middle layers and extremely depended to the seismic coefficient. Hence, it has been shown that the tensile force has increased more than 6 times compared with the static condition. The obtained results of the developed procedure were compared with the outcomes of the previous research. A good agreement has been illustrated between the amount results of developed relationships and outcomes of previous research. Maximum 20 and 25 percent difference have been reported in cases of static and seismic condition respectively.

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm (적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선)

  • Hyun Nam;Suk-Jin Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian;Xu-hong Zhou;Ke Ke;Michael CH Yam;Yu-hang Wang;Yue Qiu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.221-238
    • /
    • 2023
  • This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.

Mechanical properties of steel-polypropylene fiber reinforced fully recycled coarse aggregate concrete

  • Weiwei Su;Zongping Chen;Haoyu Liao;Dingyuan Liu;Xingyu Zhou
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, the steel fiber and the polypropylene fiber were used to enhance the mechanical properties of fully recycled coarse aggregate concrete. Natural crushed stone was replaced with recycled coarse aggregate at 100% by volume. The steel fiber and polypropylene fiber were used as additive material by incorporating into the mixture. In this test two parameters were considered: (a) steel fiber volume ratio (i.e., 0%, 1%, 1.5%, 2%), (b) polypropylene fiber volume ratio (i.e., 0%, 0.1%, 0.15%, 0.2%). The results showed that compared with no fiber, the integrity of cubes or cylinders mixed with fibers after failure was better. When the volume ratio of steel fiber was 1~2%, the width of mid-span crack after flexural failure was 5~8 mm. In addition, when the volume ratio of polypropylene fiber was 0.15%, with the increase of steel fiber content, the static elastic modulus and toughness of axial compression first increased and then decreased, and the flexural strength increased, with a range of 6.5%~20.3%. Besides, when the volume ratio of steel fiber was 1.5%, with the increase of polypropylene fiber content, the static elastic modulus decreased, with a range of 7.0%~10.5%. The ratio of axial compression toughness first increased and then decreased, with a range of 2.2%~8.7%. The flexural strength decreased, with a range of 2.7%~12.6%. On the other hand, the calculation formula of static elastic modulus and cube compressive strength of fully recycled coarse aggregate with steel-polypropylene fiber was fitted, and the optimal fiber content within the scope of the test were put forward.

The Seismic Source Parameters for Earthquakes Occurring in the Korean Peninsula (한반도 지진의 지진원 상수)

  • Kim, Sung-Kyun;Kim, Bung-Chul
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • Source parameters for forty four earthquakes which occurred in and around the Korean Peninsula were determined and the relations between them were studied. Snoke's method (Snoke, 1987) was applied in determining the corner frequencies and seismic moments. In general, the source parameters estimated at different stations for an earthquake show different values. These disagreements have been interpreted as originating, in principle, from an inadequate consideration of the source radiation pattern and direction dependent attenuation and amplification. The comer frequencies and seismic moments were averaged to exclude the such directional effects. Other source parameters were estimated from the mean corner frequency and seismic moment. The static stress drops, determined in this study, tend to be independent of seismic moment for events greater than a specific magnitude. For earthquakes with a size less than about $1.0{\times}10^{22}$ dyne-cm (nearly same as $M_L = 4.0$), the stress drop tends to decrease with the decreasing moment. This fact suggests a breakdown of the scaling law of source parameters in earthquakes below the threshold magnitude.

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu;Xu, Hongbing;Zheng, Yanbing;Xin, Xiaoshuai;Zheng, Gang
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1505-1514
    • /
    • 2019
  • The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.