• Title/Summary/Keyword: static nonlinear

Search Result 1,082, Processing Time 0.025 seconds

Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations (심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성)

  • Kim, Younghun;Park, Sung-Ju;Yoon, Sung-Won;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

Speed Sensorless Control of Ultrasonic Motors Using Neural Network

  • Yoshida Tomohiro;Senjyu Tomonobu;Nakamura Mitsuru;Urasaki Naomitsu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • In this paper, a speed sensorless control for an ultrasonic motor (USM) using a neural network (NN) is presented. In the proposed method, rotor speed is estimated by a three-layer NN which adapts nonlinearities associated with load torque and motor temperature into control. The intrinsic properties of a USM, such as high torque for low speeds, high static torque, compact size, etc., offer great advantages for industrial applications. However, the speed property of a USM has strong nonlinear properties associated with motor temperature and load torque, which make accurate speed control difficult. These properties are considered in designing a control method through the application of mathematical models. In these strategies, a detailed speed model of the USM is required which makes actual applications impractical. In the proposed method, a three-layer NN estimates the speed of the USM from the drive frequency, the root mean square value of input voltage and the surface temperature of the USM, where no mechanical speed sensor is needed. The NN speed based estimator enables inclusion of variations in driving conditions due to input signals of the NN involved during the driving state of the USM. The disuse of sensors offers many advantages on both the cost and maintenance front. Moreover, the model free sensorless control method offers practical controller construction within a small number of parameters. To validate the proposed speed sensorless control method for a USM, experiments have been executed under several conditions.

Dead Time Compensation of Grid-connected Inverter Using Resonant Controller (공진 제어기를 이용한 계통 연계형 인버터의 데드타임 보상)

  • Han, Sang-Hyup;Park, Jong-Hyoung;Kim, Heung-Geun;Cha, Honn-Yong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.569-576
    • /
    • 2011
  • This paper proposes a new dead time compensation method for a PWM inverter. Recently, PWM inverters are extensively used for industry applications, such as ac motor drives, distributed grid-connected systems and a static synchronous compensator (STATCOM). Nonlinear characteristics of the switch and the inverter dead time cause a current distortion and deterioration of power quality. The dominant harmonics in the output current are the $5^{th}$ and $7^{th}$ harmonics in the stationary frame, and the $6^{th}$ harmonics in the synchronous rotating frame. In this paper, a resonant controller which compensates the $6^{th}$ harmonics in the synchronous rotating frame is proposed. This method does not require any off-line experimental measurements, additional hardware and complicated mathematical computations. Furthermore, the proposed method is easy to implement and does not cause any stability problem.

Seismic Performance Evaluation of Inverted V Braced Steel Frames with Considering P-Δ Effects: A Case Study (P-Δ 효과를 고려한 역 V형 철골 가새골조의 내진성능평가: 사례연구)

  • Lee, Cheol-Ho;Kim, Jeong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2004
  • Most of the columns in centrally braced steel frame buildings are usually designed as the gravity columns to reduce connection cost. For a rational seismic performance evaluation of centrally braced steel frame buildings, it is important to properly incorporate in the analysis  the P-${\Delta}$ effects arising from the gravity columns. An effective scheme for the P-${\Delta}$ effects modeling due to the gravity columns was illustrated based on the concept of fictitious leaning column. Seismic performance evaluation of inverted V braced steel frames with or without P-${\Delta}$ effects modeling was conducted by following the FEMA 273 NSP (Nonlinear Static Procedure). The problem in estimating dynamic P-${\Delta}$ modification factor (C3) in FEMA 273 was discussed. The results of this study indicated that the P-${\Delta}$ effects should be included in the seismic performance evaluation of centrally braced steel frames. This study also showed that the inverted V braced frames, retrofitted by applying the tie bars to redistribute the inelastic demand over the height of the building, exhibit significantly improved seismic performance.

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

Evaluation of seismic performance of road tunnels in operation (운영 중인 도로 터널의 내진 성능 평가)

  • Ahn, Jae-Kwang;Park, Du-Hee;Kim, Dong-Kyu;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.69-80
    • /
    • 2013
  • This study evaluates the seismic performance of road tunnels designed before the provisions for seismic design of tunnels were first established in 1999. Extensive design data and site investigation reports are investigated to select tunnels sections that are considered to be most susceptible to seismically induced damage under earthquake loading. Detailed analyses are performed on selected tunnels. The methods used are method of displacement and dynamic analysis. In performing the method of displacement, which is a type of pseudo-static analysis method used for underground structures, full domain and reduced domain modeling were used. The dynamic analyses are performed using finite difference method and using nonlinear constitutive model. Comparisons show that the reduced domain method of displacement match very closely with the dynamic analysis, demonstrating that it is the most suitable method for evaluating the seismic performance of road tunnels built in rocks. It is also shown that road tunnels, for which seismic design were not applied, are safe under the seismic risks corresponding to an earthquake with a return period 1000 years. It is concluded that additional seismic retrofit of tunnels is not necessary.

Controlling of Dam Gates with Outflow Control by Dynamic Fuzzy Inference (동적 퍼지 추론에 의한 방류량 조절 가능 댐 수문 제어)

  • Woo, Young-Woon;Lee, Soo-Jong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.75-82
    • /
    • 2008
  • Control of dam gates is a complex, nonlinear, and non-stationary control process and is significantly affected by hydrological conditions which are not predictable beforehand. In this paper, we proposed control methods based on a fuzzy inference method for the operation of dam gates. The proposed methods are not only suitable for controlling gates but also able to maintain target water level in order to prepare a draught, and able to control the amount of the outfow from a reservoir in order to prevent floods in lower areas of a river. In the proposed methods, we used the dynamic fuzzy inference method that membership functions can be varied by changing environment conditions for keeping up the target water level instead of conventional static fuzzy inference methods, and used additional fuzzy rules and membership functions for restricting the amount of the outflow. Simulation results demonstrated that the proposed methods produce an efficient solution for both of maintaining target water level defined beforehand and controlling the amount of the outflow.

  • PDF

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Numerical Prediction of elastic Material Properties of Composites by A Constrained Nonlinear Optimization Method (구속적 비선형 최적화에 의한 합성재료 탄성물성치의 수치적 예측)

  • 신수봉;고현무
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-232
    • /
    • 1997
  • Material properties of a new composite composed of components with known material properties are usually investigated through experiments. Elastic modulus and Poisson's ratio are measured at various volume fractions of mixed components and utilized as the base information on an analytical model for predicting the mechanical behaviors of a structure constructed by the composite. Elastic material properties of a composite at various volume fractions are numerically estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Then, the material properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theoretical equations.

  • PDF

Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication

  • Kim, Hee-Sun;Park, Jae-Yong;Kim, Na-Eun;Shin, Yeong-Soo;Park, Ji-Man;Chun, Youn-Sic
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.218-226
    • /
    • 2012
  • PURPOSE. The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS. For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS. As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION. This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.