• Title/Summary/Keyword: static code analysis

Search Result 374, Processing Time 0.027 seconds

A stress-function variational approach toward CFRP -concrete interfacial stresses in bonded joints

  • Samadvand, Hojjat;Dehestani, Mehdi
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 2020
  • This paper presents an innovative stress-function variational approach in formulating the interfacial shear and normal stresses in an externally bonded concrete joint using carbon fiber-reinforced plastic (CFRP) plies. The joint is subjected to surface traction loadings applied at both ends of the concrete substrate layer. By introducing two interfacial shear and normal stress functions on the CFRP-concrete interface, based on Euler-Bernoulli beam idea and static stress equations of equilibrium, the entire stress fields of the joint were determined. The complementary strain energy was minimized in order to solve the governing equation of the joint. This yields an ordinary differential equation from which the interfacial normal and shear stresses were proposed explicitly, satisfying all the multiple traction boundary conditions. Lamination theory for composite materials was also employed to obtain the interfacial stresses. The proposed approach was validated by the analytic models in the literature as well as through a comprehensive computational code generated by the authors. Furthermore, a numerical verification was carried out via the finite element software ABAQUS. In the end, a scaling analysis was conducted to analyze the interfacial stress field dependence of the joint upon effective issues using the devised code.

A Quantitative Assessment Modeling Technique for Survivality Improvement of Ubiquitous Computing System (유비쿼터스 컴퓨팅 시스템의 생존성 개선을 위한 정량적 분석 모델링 기법)

  • Choi, Chang-Yeol;Kim, Sung-Soo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.633-642
    • /
    • 2005
  • Ubiquitous computing system is about networked processors, which is constructed with one or more computers interconnected by the networks. However, traditional security solution lacks a Proactive maintenance technique because of its focusing on developing the qualitative detection and countermeasure after attack. Thus, in this paper, we propose a quantitative assessment modeling technique, by which the general infrastructure can be improved and the attacks on a specific infrastructure be detected and protected. First of all, we develop the definition of survivality and modeling technique for quantitative assessment modeling with the static information on the system random information, and attack-type modeling. in addition, the survivality analysis on TCP-SYN attack and code-Red worm attack is performed for validating the proposed technique.

A Study on the Relationship between Earthquake Damage and the Design Eccentricity of Building with Planar Irregularity (평면 비정형 건물의 설계편심과 지진 손상도의 상관관계에 관한 연구)

  • Lee, Kwang Ho;Jeong, Seong Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • In the Korean Building Code (KBC), the Design Eccentricity involves the torsional amplification factor (TAF), and the inherent and accidental eccentricities. When a structure of less than 6-stories and assigned to seismic design category C or D is designed using equivalent static analysis method, both KBC-2006 and KBC-2009 use the TAF but apply different calculation methods for the of design eccentricity. The design eccentricity in KBC-2006 is calculated by multiplying the sum of inherent eccentricity and accidental eccentricity at each level by a TAF but that in KBC-2009 is calculated by multiplying only the accidental eccentricity by a TAF. In this paper, the damage indices of a building with planar structural irregularity designed by different design eccentricities are compared and the relationship between the earthquake damage and design eccentricity of the building is evaluated. On the basis of this study, the increment of design eccentricity results in the decrement of final eccentricity and global damage index of structure. It is observed that design eccentricity in KBC-2006 reduces the vulnerability of torsional irregular building compared to design eccentricity in KBC-2009.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Optimization Using Partial Redundancy Elimination in SSA Form (SSA Form에서 부분 중복 제거를 이용한 최적화)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.217-224
    • /
    • 2007
  • In order to determine the value and type statically. CTOC uses the SSA Form which separates the variable according to assignment. The SSA Form is widely being used as the intermediate expression of the compiler for data flow analysis as well as code optimization. However, the conventional SSA Form is more associated with variables rather than expressions. Accordingly, the redundant expressions are eliminated to optimize expressions of the SSA From. This paper defines the partial redundant expression to obtain a more optimized code and also implements the technique for eliminating such expressions.

Advanced procedure for estimation of pipeline embedment on soft clay seabed

  • Yu, S.Y.;Choi, H.S.;Park, K.S.;Kim, Y.T.;Kim, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • In the present study, the advanced procedure has been proposed to estimate higher accuracy of embedment of pipes that are installed on soft clay seabed. Numerical simulation by OrcaFlex simulation code was performed to investigate dynamic seabed embedment, and two steps, i.e., static and dynamic analysis, were adopted. In total, four empirical curves were developed to estimate the seabed embedment including dynamic phenomena, i.e., behaviour of vessel, environmental condition, and behaviour of nonlinear soil. The obtained results were compared with existing methods (named general method) such as design code or guideline to examine the difference of seabed embedment for existing and advance methods. Once this process was carried out for each case, a diagram for estimating seabed embedment was established. The applicability of the proposed method was verified through applied examples with field survey data. This method will be very useful in predicting seabed embedment on soft clay, and the structural behaviours of installed subsea pipelines can be changed by the obtained seabed embedment in association with on-bottom stability, free span, and many others.

High-performance propellant development for Sounding Rocket (Sounding Rocket용 고성능 추진제 조성연구)

  • Kim, Hye-Lim;Won, Jong-Ung;Choi, Seong-Han;Lee, Won-Bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.356-359
    • /
    • 2011
  • In this study, applicable to Sounding Rocket about the development of high-performance propellant was studied. Sounding Rocket requires generally multistage rocket system for atmospheric research. This study describes the development of two types solid propellant compositions which are based on HTPB/AP for the two-stage rocket. CEA code of NASA and internal ballistic analysis were used for confirming the theoretical performance of designed propellants. The strand burner and JANNAF tensile test was used to measure ballistic and mechanical properties of designed propellants. Finally, static fired test of standard motors was performed to prove the possibility of development.

  • PDF

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit

  • Yun, Hyungju;Kim, Do-Yeon;Park, Kwangheon;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.624-634
    • /
    • 2016
  • Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that $k_{eff}$ values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

Automation of Fatigue Durability Analysis of Welded Bogie Frame using Process Integration Tool (프로세스 통합도구를 활용한 용접대차프레임 피로내구해석의 자동화)

  • Bang Je-Sung;Han Seung-Ho;Rim Chae-Whan;Lee Kwang-Ki;Lee Kwang-Soon;Song See-Yeob
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2005
  • For the design of welded bogie frame, the concept of multidisciplinary engineering activities, i.e. static, fatigue and dynamic analysis, has been applied, in which the sharing of design parameters related with each analysis and the collaboration of the working parts in charge should be fulfilled. However, in spite of these necessities, the multi-disciplinary engineering activities couldn't be performed in practice due to tack of the automation of the required analysis. In this paper, an automation of fatigue durability analysis of welded bogie frame according to UIC-Code was proposed by using the Model Center, which enables to integrate the several tools for the fatigue durability analysis, i.e. I-DEAS, ANSYS and BFAP, and to perform iterative analysis works in relation to the geometrical change of transom support bracket. Besides, the wrapping programs to control I/O-data and interfaces of these tools were developed. The developed automation technique brings not only significant decreasing man-hour required in the durability analysis, but also providing a platform of the multidisciplinary engineering activities.