• 제목/요약/키워드: static and dynamic response

검색결과 696건 처리시간 0.029초

동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰 (An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design)

  • 이현아;김용일;강병수;김주성;박경진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

등가정하중을 이용한 차량 전면구조물 충돌최적설계 (Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 이영명;안진석;박경진
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

소형 수직축 풍력발전기의 내진검증 해석 (Seismic Qualification Analysis of a Vertical-Axis Wind Turbine)

  • 최영휴;홍민기
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System)

  • 최정열;엄맥;강덕만;박용걸
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system)

  • 이시용;엄맥;오수진;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

도시철도 지중 콘크리트 구조물의 내진해석법 적용에 관한 연구 (A Study of seismic analysis method of urban rail transit's underground concrete structure)

  • 이희영;이동호;김은겸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1159-1164
    • /
    • 2005
  • Seismic analysis methods in use on ground structure are equivalentstatic analysis, response-displacement method and dynamic analysis etc. Equivalentstatic analysis does not considerdynamic effect, and dynamic analysis process is very complex. then 'Urbanrail transit earthquake-resistance design standard (2005.06)' is persuading that analyze by response displacement method that consider enough dynamic effect of ground structure statically. But, It is very complex and difficult to apply response-displacement method in the field. So, modified equivalentstatic analysis or pseudo static analysis that is easy to apply in the field and have rationality of design is practically used. In this study, I try to prescribe the applicable scale of structure and static analysis that have calculative effectiveness about response-displacement method by comparing and analyzing the result of each analysis method according to the scale of urban rail transit' box type concrete structure and by performing seismic analysis that apply modified equivalentstatic analysis, pseudo static analysis and response-displacement method changing the kind of ground, depth of bedrock, size of structure.

  • PDF

자동차용 고무부품에 대한 대변형 유한요소해석 (Large deformation finite element analysis for automotive rubber components)

  • 김헌영;최천;방원준;김재수
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

등가정하중을 이용한 접합날개의 구조최적설계 (Structural Optimization of a Joined-Wing Using Equivalent Static Loads)

  • 이현아;김용일;박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계 (Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support)

  • 김현범;이재준;장환학;박경진
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.497-504
    • /
    • 2012
  • 모바일하버는 해상에서 컨테이너 상하역 작업을 하는 새로운 해상물류 시스템이다. 모바일하버용크레인과 같이 해상에서 작업하는 대형 구조물은 파도에 의해 발생하는 지지부의 운동으로 관성력의 영향을 크게 받는다. 따라서 구조물의 안전성에 대한 정확한 검증이 요구되며, 생산 비용을 줄이기 위해 경량화가 매우 중요하다. 이런 요구조건을 위해 동적 응답 최적설계를 수행한다. 등가정하중법은 동하중을 등가정하중으로 변환한 후, 정적 응답 최적화기법을 사용하여 문제를 해결하는 동적 응답 최적설계 방법이다. 지지부의 움직임을 고려한 등가정하중법을 제안하고, 제안한 방법으로 모바일하버용 크레인을 최적화한다.