• Title/Summary/Keyword: static and dynamic analyses

Search Result 406, Processing Time 0.027 seconds

Nonlinear Structural Analysis of High-Aspect-Ratio Structures using Large Deflection Beam Theory

  • Kim, Kyung-Seok;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • The nonlinear structural analyses of high-aspect-ratio structures were performed. For the high-aspect-ratio structures, it is important to understand geometric nonlinearity due to large deflections. To consider geometric nonlinearity, finite element analyses based on the large deflection beam theory were introduced. Comparing experimental data and the present nonlinear analysis results, the current results were proved to be very accurate for the static and dynamic behaviors for both isotropic and anisotropic beams.

Occupant Behavior Analysis of Simplified Full Car Model in Consideration of Joint (결합부 강성을 고려한 단순차체모델의 승객거동 해석)

  • 김홍욱;박신희;강신유;한동철;김정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.220-227
    • /
    • 1998
  • In substitution of beam-nonlinear spring model for real-car, it may have errors due to complicated characteristics of joint and overestimation of joints stiffness. In this research, a method for the joint modeling was suggested by nonlinear static and dynamic analyses of beam and shell joint models and verified by the application of accomplished joint modeling method to simplified full car model. In consequence, modified simplified full car model was improved in local acceleration and rigid wall force. Finally, the frontal crash analyses with the dummy were established and the accelerations of accelerations of head, chest and pelvis had good agreements with those of shell model.

  • PDF

A study on the release burst spectra of the voiceless plosives from the English and Korean spontaneous speech corpus (영어와 한국어 자연발화 코퍼스에서의 무성 폐쇄음 개방 파열 스펙트럼 연구)

  • Hwang, Sunmi;Yoon, Kyuchul
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.27-34
    • /
    • 2017
  • The purpose of this work is to examine the English and Korean voiceless plosives from the Buckeye[15] and Seoul[16] corpus in terms of their static spectral characteristics. The plosives were automatically extracted by a Praat script. In order to estimate the percent correctness in the classification of the plosives, discriminant analyses were performed whose trainings were based on four spectral moments, i.e. the center of gravity, variance, skewness and kurtosis as suggested in [6]. Another set of discriminant analyses were performed based on the spectral tilts. In the last set of analyeses, the spectral moments and tilts were both used in the training. Results showed that the correct classification rate did not exceed around 65% in the best case, which suggested that phonetic cues other than the release burst would be necessary including the dynamic spectral aspects and vowel-onset cues.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.

Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

An Analysis of the Impact of Climate Change on the Korean Onion Market

  • BAEK, Ho-Seung;KIM, In-Seck
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2020
  • Purpose: Agriculture, which is heavily influenced by climate conditions, is one of the industries most affected by climate change. In this respect, various studies on the impact of climate change on the agricultural market have been conducted. Since climate change is a long-term phenomenon for more than a decade, long-term projections of agricultural prices as well as climate variables are needed to properly analyze the impact of climate change on the agricultural market. However, these long-term price projections are often major constraints on studies of climate changes. The purpose of this study is to analyze the impacts of climate changes on the Korean onion market using ex-post analysis approach in order to avoid the difficulties of long-term price projections. Research design, data and methodology: This study develops an annual dynamic partial equilibrium model of Korean onion market. The behavioral equations of the model were estimated by OLS based on the annual data from 1988 to 2018. The modelling system is first simulated to have actual onion market conditions from 2014 to 2018 as a baseline and then compared it to the scenario assuming the climatic conditions under RCP8.5 over the same period. Scenario analyses were simulated by both comparative static and dynamic approach to evaluate the differences between the two approaches. Results: According to the empirical results, if the climate conditions under RCP8.5 were applied from 2014 to 2018, the yield of onion would increase by about 4%, and the price of onion would decrease from 3.7% to 17.4%. In addition, the average price fluctuation rate over the five years under RCP8.5 climate conditions is 56%, which is more volatile than 46% under actual climate conditions. Empirical results also show that the price decreases have been alleviated in dynamic model compared with comparative static model. Conclusions: Empirical results show that climate change is expected to increase onion yields and reduce onion prices. Therefore, the appropriate countermeasures against climate change in Korean onion market should be found in the stabilization of supply and demand for price stabilization rather than technical aspects such as the development of new varieties to increase productivity.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Estimation of Static Load Applied on Steam Generator Tubes (증기발생기 전열관에 작용되는 정적 하중 평가)

  • Park, Bumjin;Park, Jai Hak;Cho, Young Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • If a plugged tube in a steam generator is broken, it may damage nearby intact tubes. To prevent this damage, it is recommended that a stabilizer is installed into the plugged tube. However, the installation cost of a stabilizer is very high. So studies are required to determine the conditions on which the installation is necessary. For this purpose static loads and dynamic loads applied on a tube should be known to estimate the residual strength and remaining fatigue and wear life of a plugged tube. Two-dimensional and three-dimensional computational fluid dynamics (CFD) analyses are performed to obtain the drag coefficient for cross flow to a tube. Using the obtained drag coefficient, the static load can be estimated and the residual strength of a plugged tube can be calculated. An inclined flow problem is also analyzed and the vertical and horizontal forces are obtained and discussed.

Comparative Study on Ground Response Analyses for Seismic Design of Geotechnical Structures (지반 구조물의 내진설계를 위한 지반응답해석 기법의 비교연구)

  • Hwang, Jae-Ik;Han, Jin-Tae;Cho, Jong-Seok;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.294-301
    • /
    • 2005
  • Ground response analysis is one of the most important and most commonly encountered problems in geotechnical earthquake engineering. It is a prerequisite step for liquefaction assessment of saturated soil or the pseudo-static and dynamic analysis of geotechnical structures. A number of techniques have been developed for ground response analysis. In this study, ground response analyses were performed using the computer programs that are currently being used domestically. From these analyses, the analysis techniques applied to the programs were compared and analyzed. The results of ground response analyses were compared as follows: 1) 1-dimensional analysis vs. 2-dimensional analysis; 2) equivalent linear analysis vs. nonlinear analysis.

  • PDF

An Analysis of the Circumferentially Grooved Floating Ring Journal Bearing (원주방향 급유홈 프로팅링 저어널베어링의 해석)

  • 정연민;김경웅
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 1991
  • The static and dynamic performances of a floating ring journal bearing with central circumferential grooves at the inner and outer films are obtained numerically with isothermal lubrication theory. Elrod algorithm implementing Jakobsson-Floberg-Olsson cavitation boundary condition is adopted to predict cavitation regions in the inner and outer films more accurately than conventional analyses using half Sommerfeld or Reynolds conditions. The pressure drop in the circumferential groove of the inner film due to the rotation of the journal and ring is taken into account. It is shown that the lubricant supply pressure has significant influence on the load capacity and dynamic coefficients of the bearing. When the supply pressure is low and the journal speed is high, the pressure drop results in severe starvation of lubricant in the inner film and varies the overall performance of the bearing remarkably.