• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.028 seconds

A general dynamic iterative learning control scheme with high-gain feedback

  • Kuc, Tae-Yong;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1140-1145
    • /
    • 1989
  • A general dynamic iterative learning control scheme is proposed for a class of nonlinear systems. Relying on stabilizing high-gain feedback loop, it is possible to show the existence of Cauchy sequence of feedforward control input error with iteration numbers, which results in a uniform convergance of system state trajectory to the desired one.

  • PDF

STABILIZATION OF HIV / AIDS MODEL BY RECEDING HORIZON CONTROL

  • ELAIW A. M.;KISS K.;L CAETANO M. A.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.95-112
    • /
    • 2005
  • This work concerns the stabilization of uninfected steady state of an ordinary differential equation system modeling the interaction of the HIV virus and the immune system of the human body. The control variable is the drug dose, which, in turn, affects the rate of infection of $CD4^{+}$ T cells by HIV virus. The feedback controller is constructed by a variant of the receding horizon control (RHC) method. Simulation results are discussed.

Optimal Sliding-Mode Controller Design based on State Observer (관측기 기반 하의 최적 슬라이딩 모드 제어기 설계)

  • Hong, Min-Suk;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.119-121
    • /
    • 2005
  • The sliding-mode control technique could make a system unstable which external disturbance and uncertainty exists in. This paper suggests a robust sliding-mode control algorithm which can be applied to a linear system with parameter uncertainties. To reduce the chattering effect, the whole system is comprised of using a state variable in which the state's estimated value is added. The condition of estimated state results from state observer. The proposed control algorithm uses the optimal feedback controller following the dynamic system equation which consists of a state variable resulting from its own state variable, controller input, estimated state variable. Through comparison with the time optimal control algorithm using simulation, the suggested algorithm shows the improved stability and robustness while it manifests the fast tracking characteristics.

  • PDF

A PI-type State Feedback Control of Seesaw System Using Reduced-order Observer (축소차수 관측기를 이용한 시소시스템의 Pl형 상태피드백 제어)

  • Ryu, Ki-Tak;Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;Kim, Jong-Su;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.853-858
    • /
    • 2007
  • In this paper, a seesaw system composed with a moving cart on the rail and seesaw frame is made to demonstrate the effectiveness of the control theory. The control aim is to maintain an equilibrium of seesaw frame in spite of various initial conditions and an allowable disturbance. To solve this control problem, a PI-type state feedback controller using reduced-order observer is implemented and applied to the seesaw system. The reduced-order observer can be used to estimate the state variables in the case of the limit of sensor number or the constraint on setting sensors and the cost. A series of simulation are carried out to verify the effectiveness of the control system.

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF

Robust Control of Pressure Control System Using Direct Drive Valve (DDV를 이용한 압력 제어시스템의 강인제어)

  • Lee Chang-Don;Park Sung-Hwan;Lee Jin-Kul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges (끝단이 탄성 지지된 강체판의 최적진동제어)

  • Lee, Seong-Ki;Yun, Shin-Il;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

Fuzzy Controller for Nonlinear Systems Using Intelligent Digital Redesign (지능형 디지털 재설계기법을 이용한 비선형 시스템의 제어기 설계)

  • 이상준;이남수;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.176-179
    • /
    • 2000
  • This paper addresses a fuzzy controller for nonlinear systems control using a pole placement in a specified disk and fuzzy controller is redesign for Intelligent digital redesign method. for nonlinear system, we obtain continuous time state feedback gain that guarantee stability of globally TS fuzzy system. The feedback gain is satified pole placement in a specified disk region so that the closed loop system is stable, For digital control redesgin of continuous time TS fuzzy model, we does state matching and obtain feedback gain of digital controller. Finally, it is shown that the proposed method is feasible through a computer simulation.

  • PDF

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF

Nonlinear Feedback Linearization-Full Order Observer/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to obtain smmoth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO)and eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF