• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.026 seconds

State Feedback Control for Model Matching Inclusion of Asynchronous Sequential Machines with Model Uncertainty (모델 불확실성을 가진 비동기 순차 머신의 모델 정합 포함을 위한 상태 피드백 제어)

  • Yang, Jung-Min;Park, Yong-Kuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.7-14
    • /
    • 2010
  • Stable-state behaviors of asynchronous sequential machines represented as finite state machines can be corrected by feedback control schemes. In this paper, we propose a state feedback control scheme for input/state asynchronous machines with uncertain transitions. The considered asynchronous machine is deterministic, but its state transition function is partially known due to model uncertainty or inner logic errors. The control objective is to compensate the behavior of the closed-loop system so that it matches a sub-behavior of a prescribed model despite uncertain transitions. Furthermore, during the execution of corrective action, the controller reflects the exact knowledge of transitions into the next step, i.e., the range of the behavior of the closed-loop system can be enlarged through learning. The design procedure for the proposed controller is described in a case study.

The Vibration Suppression Control of a Two-Mass System using a Reference Model (2관성계의 규범모델에 의한 진동억제제어)

  • Kim, Jin-Soo;Kang, Seog-Jin;Kim, Hyun-Jung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1872-1875
    • /
    • 1998
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. Recently, there are new methods which estimate unknown state variables by using a reduced order observer and feedback these state variables by using a pole placement design method. But there is a trade-off between the fast command following property and the attenuation of disturbances and vibrations in these design methods. In this paper, the vibration suppression control of a two-mass system using a reference model is proposed. Because of using a reference model, the proposed control satisfy the fast command following property and the attenuation of disturbances and vibrations. Control parameter can be changed to maintain high system performance in control using a reference model. Experimental results show the validity of the proposed state feedback control using a reference model, and this controller is compared with the state feedback controller.

  • PDF

Control of nonlinear systems with mismatched uncertainties using an output feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang-Yong;Sung, Yul-Wan;Kwon, Oh-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1188-1194
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilize globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

Control of Nonlinear Systems with Mismatched Uncertainties Using an Output Feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang Yong;Seong, Yeol Wan;Gwon, O Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1184-1184
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilized globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

An Analytical Design of Feedback Regulator and Signal State Estimator in Discrete Linear Systems (이산 선형시스템에서의 피이드백 조정기 및 신호상태 추정기의 해석적 설계)

  • 고명삼
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.19-30
    • /
    • 1972
  • This paper deals with an analytic design of feedback regulator and signal state estimator in discrete linear systems. On the way of developing the deadbeat regulator, some necessary conditions for control policy have been derived, it is proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. We have derived some relations such that the eigenvalue of system plant can be arbitrarily changed by the characteristics of minor loop compensator which is introduced in feedback path. And also we show that the signal state estimator which estimates the state of given signal sequence must satisfy some conditions. Theorems and conclusions are described with some simplel nontrivial numerical examples and signal state tracking application problems.

  • PDF

A Study on Way-Point Tracking of AUV using State Feedback (상태 궤환을 사용한 AUV의 경우점 추적 연구)

  • Kwon, Soon-Tae;Baek, Woon-Kyung;Kang, In-Pil;Choi, Hyeung-Sik;Joo, Moon-G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1266-1272
    • /
    • 2011
  • For way-point tracking of an autonomous underwater vehicle, a state feedback controller was designed by using pole placement scheme in discrete time domain. In the controller, 4 state variables were used for regulating the depth of the vehicle in z direction, and 3 state variables, for steering the vehicle in xy plane. Assuming constant speed of AUV, we simplified the design of the way-point tracking system. The proposed controller was simulated by MATLAB/Simulink using 6 degree-of-freedom nonlinear model and its performance of way point tracking was shown to be fulfilled within 1 m, nevertheless the proposed controller is quite simple and easy to implement compared to sliding mode controller.

PLL Equivalent Augmented System Incorporated with State Feedback Designed by LQR

  • Wanchana, Somsak;Benjanarasuth, Taworn;Komine, Noriyuki;Ngamwiwit, Jongkol
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.161-169
    • /
    • 2007
  • The PLL equivalent augmented system incorporated with state feedback is proposed in this paper. The optimal value of filter time constant of loop filter in the phase-locked loop control system and the optimal state feedback gain designed by using linear quadratic regulator approach are derived. This approach allows the PLL control system to employ the large value of the phase-frequency gain $K_d$ and voltage control oscillator gain $K_o$. In designing, the structure of phase-locked loop control system will be rearranged to be a phase-locked loop equivalent augmented system by including the structure of loop filter into the process and by considering the voltage control oscillator as an additional integrator. The designed controller consisting of state feedback gain matrix K and integral gain $k_1$ is an optimal controller. The integral gain $k_1$ related to weighting matrices q and R will be an optimal value for assigning the filter time constant of loop filter. The experimental results in controlling the second-order lag pressure process using two types of loop filters show that the system response is fast without steady-state error, the output disturbance effect rejection is fast and the tracking to step changes is good.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

A New $H_2$ Bound for $H_{\infty}$ Entropy

  • Zhang, Hui;Sun, Youxian
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.620-625
    • /
    • 2008
  • The $H_{\infty}$ entropy in $H_{\infty}$ control theory is discussed based on investigating information transmission in continuous-time linear stochastic systems. It is proved that the stabilizing feedback does not change the time-average information transmission between system input and output, and the $H_{\infty}$ entropies of open- and closed-loop stable transfer functions are bounded by mutual information rate between input and output in the open-loop system. Furthermore, a new $H_2$ upper bound for $H_{\infty}$ entropy is introduced with a numerical example. Thus the $H_{\infty}$ entropy of a stable transfer function is sandwiched between $H_2$ norms of the original system and a static feedback system.

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.