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A New H; Bound for H. Entropy

Hui Zhang and Youxian Sun

Abstract: The H,, entropy in H, control theory is discussed based on investigating information
transmission in continuous-time linear stochastic systems. It is proved that the stabilizing
feedback does not change the time-average information transmission between system input and
output, and the H,, entropies of open- and closed-loop stable transfer functions are bounded by
mutual information rate between input and output in the open-loop system. Furthermore, a new
H, upper bound for H,, entropy is introduced with a numerical example. Thus the H,, entropy of a
stable transfer function is sandwiched between H, norms of the original system and a static

feedback system.
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mutual information rate.

1. INTRODUCTION

As a suboptimal robust control design method, the
minimum entropy H, control method has been
developed in the past [1-3]. It adopts an unintuitive
function of system closed-loop transfer matrix as its
auxiliary performance index. For F(s)e RH,,

where RH,, denotes the set of all proper, rational

and stable transfer functions, when the H, norm
satisfies || Fll, <4, the entropy of F(s) in H,

control is defined as:
a _/12 © 2% .
EF,H= 2— I Indet[/ - A °F (iw)F(iw)]dw, (1)
T —o0

where F (iw)= F(-iw). Function (1) is different
from the concept of Shannon entropy. We refer to it as
the H, entropy. The minimum entropy H, control
method is to find an admissible controller minimizing
the H,, entropy of a closed-loop system when its Hy
norm is constrained. And the deduced minimum
entropy H,, controller is in fact the ‘central controller’
[1]. It was known that the H, entropy of a stable
system is lower bounded by its H, norm, i.e.,
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with equality holds when A —>o, and hence an

index measuring the tradeoff between the H,
optimality and the H, optimality [10]. Although the
H,, entropy is different from Shannon entropy, it was
proved to be connected with information theoretic
measures firmly [5]. In the authors’ opinion, the
physical meaning of H, entropy still needs to be
discussed, especially from the viewpoint of
information theory [6].

In this note, a further discussion on H, entropy of
continuous-time, linear time invariant (LTI) control
system is made based on investigating information
transmission. It is shown that the stabilizing feedback
does not change the information transmission from
system input to output, and H, entropies of stable
open- and closed-loop systems are bounded by the
mutual information rate between input and output in
open-loop system. Furthermore, based on the relation
between mutual information and the minimum mean-
square error (MMSE) of state estimation, a new H,
upper bound for H, entropy is introduced. Thus the
H,, entropy is sandwiched between H, norms of the
original system and a static feedback system.

Conceptions and lemmas concerning information
transmission are introduced in Section 2. In Section 3,
the H,, entropies of open- and closed-loop systems are
proved to be bounded by mutual information rates,
and the new H, bound for H,, entropy is formulated.
Section 4 gives an illustrative example. Section 5 is

the conclusion. In this note, we use wOT to represent
the path of a continuous-time process w(f) over
0<t<T,teR, use w(s)and D, (w) to represent

its Laplace transform and spectrum density,
respectively, and similarly for others.



A New H, Bound for H. Entropy 621

2. INFORMATION TRANSMISSION

In this section, information transmission in
continuous-time LTI systems will be discussed by
adopting the measure of mutual information rate
which describes time average transmitted information.
The mutual information rate between continuous-time
processes a(t) and f(f) is defined as [8]:

T@m* fim -;-aag A0, 3)

if the limit exists, where ](aOT ; ,BOT ) denotes the

mutual information between aOT and ﬂOT . When

the processes are stationary, the limit in (3) exists [8].
[f they are additionally joint Gaussian [9],

— o det@ det @,
T =—["n< o (@) det By (@)
4 I det @ (w)

o, (4

where 6(1)2[a’ (1) B (1)]".
Lemma 1: Suppose g, 7 be random vectors and
f(-) be a deterministic map. Then

H(u+ f(m)n)y=Huln), (5)

where H(*) and H(-|") denote entropy and conditional
entropy, respectively.
Proof: This conclusion can be derived from basic

facts in information theory [§].
Consider the following multivariable LTI system
with standard state space model [11]:

{)'c(t) = Ax(t) + Bw(?),

_ (6)
Y1) =Cx(0) + (1),

where x(n)eR”, y(eR", wt)eR" and v(r)eR"
are respectively system state, output, input process
and measurement noise; 4, B, and C are constant
matrices with corresponding dimensions. Denote
z(t) = Cx(t). The system is illustrated by Fig. 1. The

transfer matrix from w(s) to z(s) or y(s) is
H(s)2C(sl - A)'B. (7)

From the viewpoint of communication, system (6) can
be considered as an information transmission channel,
where w(t) is the source message, x(¢) or z(f) is

the encoded channel input, v(¢) is the channel noise,
and yp(r) is the channel output.

We will also consider a closed-loop system with a
stabilizing feedback controller C(s) connected

around H(s), as shown in Fig. 2, where yc(¢)

s
+ e
w4 H(s) Y
‘:—E +
)

Fig. 2. The feedback system.

denotes the closed-loop measurement output. It can be
considered as a channel with feedback. Let

T(s)2 H(s)S(s) ®)

denote the closed-loop transfer function from w(¢)

0 yo(r), where S(s)&(I-H(s)C(s) ™.

The above systems will be discussed under the
following assumptions.

Assumption 1: Suppose in Figs. 1 and 2, w(r)
and v(¢) are mutual independent stationary Gaussian
white processes with zero means and covariances (
and R, respectively; x(0) is a zero mean random
vector and independent of w(f) and wv(¢f). The
realization (6) is completely controllable and
observable. The feedback system is asymptotically
stable and well-posed [10].

We do not assume H(s) is stable. If it is stable, all
variables in Fig. 1 are stationary and the mutual
information rates (e.g., I(w;y), I(x;y)) always
exist. If it is unstable, the following lemma verifies
the existence of mutual information rates and gives an
interesting relation between mutual information and
the MMSE of state estimation. This relation had
recently gotten considerable interests in the field of
communication {12].

Let the MMSE estimation of state be denoted as
x(t). Under Assumption 1, the Kalman-Bucy filter

for system (6) approaches to the time invariant
implementation [11]:

{ (1) = (4 KO + Ky(¢t), )

¥(t) = y(t) - Cx(0),

where (1) =CX(#)+v(¢) is the innovation process,
%(t) = x(t) - X(¢) is the estimation error,

K=PC'R, (10)
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and the estimation error covariance P(f)=

E{i(t))ET (t)} converges to a constant matrix P,

which is the unique positive-definite solution to the
Riceati equation:

AP+ PAT + BOBT - PC"R'cP=0. (11)

Lemma 2 [13]: Under conditions in Assumption 1,
the mutual information rate between state x(¢) and

output y(f) exists and is
- 1 T
I(X;y)=5tr[CPC 1 (12)

where tr[-] denotes the trace of a matrix.

We have the following conclusions on information
transmission.

Lemma 3: Under conditions in Assumption 1,
mutual information rates in system (6) shown in Fig. 1
exist and,

I(x9)=1(zy)=1(wy), (13)

whether the open-loop system is stable or not.
Furthermore, the mutual information rate between the
extraneous input and the output in the closed-loop
system shown in Fig. 2 is equivalent to that in the
open-loop system shown in Fig. 1, i.e.,

I(w,yc)=I(w;y). (14)

Proof: Let ( denote the map corresponding to
output matrix C, so that yg =C (xg )+ .. Based on
Lemma 1 and the fact that in the open-loop system,
y(f) is independent of x(f) and z(f), I (xOT ; yg )=
HO8)-HCG) +vh |HGG)) = HO) = Hv ).
On the other hand, I(zg;yg) = H(yg) —H(vg).
Then we have I(x;y)=1(z;y) if they exist. Using
the same method, we can get I(w;y)=1(z;y) if
they exist. Moreover, I(x;y) exists by Lemma 2.
Then I(w;y), I(z;y) exist, and (13) is gotten.

Note that the well-posedness

S_l(s)e]RILw, where RL, denotes the set of all
proper and real-rational transfer functions, are causal.

It can be seen y.(s)=S(s)y(s). Let S and & -1
denote respectively maps corresponding to S(s) and

§7(s), so that yeg =S() and yg =S (3p):
By the property of mutual information [8],
10w 37c0) = 10w ;S (G0 ) < 1095378

= IS e N < T 5 veh).

implies  S(s),

Hence 1—(w;yc) =1 (w;y). O

Remark 1: Lemma 3 states that feedback has no
effect on information transmission from extraneous
input to output in the discussed system, where v(r)

is assumed to be white. However, it can be seen from
the proof that even if v(¢) is not white, (14) is still

true when system (6) is stable. This is different from
the conclusion on communication, which states that
for continuous stationary Gaussian channels with
colored noise, the capacity (defined as the maximum
mutual information rate between message and channel
output) is increased by feedback [7,8].

3. ANEW H, BOUND OF H,, ENTROPY

Based on the above discussion, we will give a new
mean-square interpretation for H,, entropies of
systems shown in Figs. 1 and 2. Besides Assumption 1,
suppose systems in Figs. 1 and 2 are driven by a
standard Gaussian white noise, i.e., @, =1.

Consider the case that (6) is asymptotically stable.
By the spectral factorization, there exists a rational
matrix function F,(s) with all zeros and poles of

det|F, (s)| in the left hand side of the complex plane,
such that @, () = F, (jo)F, (jo). Let

K = Fy () ko-

For @,(0)>0, @,(w)>H(o)H (jo), then
| H($) | o< k- (15)

The H,, entropy of H(s) under constraint (15) is

2
EH, )2 =— [ " In detll - k2 H(jo)H" (j)] do>.
2r ™
(16)

For the case that H(s) is not necessary stable, we

consider the stabilizing feedback system shown in Fig.
2. There exists a rational matrix function Fp(s) with

all zeros and poles of det|F-(s)| in the left hand side

of the complex plane, such that <Dyc (w) =

F(jo)Fe (). Let
72 Fe(s) ) (17)
Then &, (0)<y’l. For S(jw)d,(@)S (iw)>0, so
@, () >T(jo)T" (jo). Hence,
YT (j0) <&y (@)T ()T (o) <1 (18)

So,
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NT) o<y (19)
The H., entropy of 7(s) under (19) is

— 2 Q *
E(T,y)2 —ZV— [ in detls =y T()T" )] doo.
n 00
(20)
We have the following conclusions.
Proposition 1: Suppose @, (w)=1 besides

Assumption 1. The H, entropy of the closed-loop
transfer function 7(s) and the information

transmission in systems shown in Figs. 1 and 2
possess the following relation,

E(T,y) < 2y*T(w;yc) = 27°T(w;), 21)

with the first equality holds if and only if yc(f) in

Fig. 2 is a Gaussian white noise with spectrum /.
If the open-loop system H{(s) is asymptotically
stable, the H,, entropy of H(s) and the information

transmission in system (6) possess the following
relation,

E(H,x) <2k (w;), (22)
with the equality holds if and only if y(¢) inFig. 1 is

a Gaussian white noise with spectrum 1.
Proof: Let E&(f)2 [wT ® yg (t)]T with spectrum

¢, (@) B,y (0)

By (0) Dy (@)

the mutual spectrum of w(t), y-(¢). From (4),

PD:(w) = , where @, (o) is
Twiye) = Z—:? {7 Indetll - ;! @7 ()" (0)] doo
From (18),
i;_l{ L: In det[/ - & (&)T(j@)T" (o)) do
—1 0 ) , *
2 Loln det[l -y 2T ()T ()] dw.

Then combining with Lemma 3 we get (21). When
H(s) is stable,

I(w;y)=1(x;y)
]

= Zln detl/ - &, (@)H(0)H (j0)] do.

C4x

For @ (w)< k21, we can get (22) by combining the

above equation with (16).
Remark 2: Proposition 1 states an interesting
property of H, entropies: they are lower bounds of

v

Fig. 3. A static output feedback system.

mutual information rates between inputs and outputs.
Note that the H,, entropy of closed-loop system is
related to the mutual information rate in open-loop
system. This is an extension of conclusion in [5].
Corresponding to H(s) we construct a static output
feedback system without measurement noise, as
shown in Fig. 3. The transfer function from w(¢) to

output z'(¢) is
H(s)=C(sI - A+KC)'B. (23)

Assumption 2: Besides conditions in Assumption 1,
suppose the static feedback system H(s) shown in

Fig. 3 is closed-loop stable, i.e., all the eigenvalues of
A—-KC are in the left hand side of the complex
plane. Systems in Figs. 1, 2, and 3 are driven by a
standard Gaussian white noise w(¢) with covariance

o=1
Proposition 2: Consider systems shown in Figs. 1,
2 and 3 under Assumption 2. If the static feedback

matrix K in system H(s) is chosen as

K=IC'R, (24)

where J7 is the steady-state covariance of state of
the feedback system H(s), R is the covariance of
the measurement noise v(¢f) in system (6), then the
H,, entropy of closed-loop transfer function T(s)

and the H, norm of H(s) shown in Fig. 3 possess
the following relation,

E(T,y) <y [|H($) I3, (25)

with the equality holds if and only if y-(f) in Fig. 2

is a Gaussian white noise with spectrum y21 . If the
open-loop transfer function H(s) is asymptotically

stable, and the feedback matrix K is chosen as (24),
then the H, entropy of H(s) and the H, norm of

H(s) possess the following relation,
E(H,x) <k | H(s) |, (26)

with the equality holds if and only if y(¢) inFig. 1 is

a Gaussian white noise with spectrum K.
Proof: When H(s) is stable, /7 is the unique
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positive  solution of the Lyapunov equation
(A-KC)IT+IT1(A-KC)" +BBY =0. 1t can be
seen from the Kalman filtering theory [11] that when
K is chosen as (24), H(s) is stable and the above
equation is identical to (11), /7 = P. Moreover, under
Assumption 2, the H, norm of H(s) is | H(s)|3=

lim B{(z\("))" z'(t)} = tt{ CITCT]. Then by Lemma 2,
{—»0

me=%uﬁ@ma @7

With Proposition 1 and Lemma 3 we have

E(T,y)<2y*T(x;y), with the equality holds if and
only if yc(f)
spectrum y21. Combining with (27), we get (25).
When H(s) is stable, we can get (26) by combining
(27) with (13) and (22). 0

Remark 3: It was known that the H, norm of a
stable transfer function is a lower bound of its H.
entropy [1] as stated by (2). In (26), however, an
upper H, norm bound for the H, entropy is
formulated with a static feedback. Thus the H,
entropy of a stable transfer function is sandwiched

between H, norms of the original and static feedback
systems:

is a Gaussian white noise with

| H(s)|3< EH, <)< || H)B - (28)
4, ILLUSTRATIVE EXAMPLE

To illustrate inequalities (28), we give here a
numerical example. The computing results are
obtained by wusing Matlab. Let parameters in

o -2 1 T
realization (6) be A= , B= [0 1] , C=
0 -2

[1 0}, the covariances of w(¢) and v(t) in (6) are

O=1, R=1, respectively. We get that the steady-

state  covariance of the filtering error is

_[0.0307 0.0618
~10.0618 0.2490

-2.0307 1
-0.0618 -2

H(s) and H(s) are calculated to be

}. H(s)=C(sI — 4)"' B, where

A =A-KC= } The H, norms of

| H(s)l,=0.1768, | H(s)|l,=0.1735, (29)

respectively. To get the bound x in (15), we need
the spectral factorization realization F)(s) of system

(6) satisfying F; (jo)F,(jo)=®,(w). This can be

obtained by Kalman-Bucy filter [l11], ie.,
F,(s)=C(sI-4)'By+D,, where D,=R"?=1,
0.0307
0.0618

is then calculated to be

B, =PC"R? =[ } The H,, norm of F,(s)

& = Fy () =1.0312. (30)

Because in this example yp(f) is not white, and
x=1.0312 <0, then from (28), (29), and (30) we get

0.0313 < E(H, &) < 0.0320. 31)

On the other hand, by using the state space computing
method of the H, entropy [4], we get that under
IH($) || ,<x=1.0312 the H, entropy of H(s),

defined by (16), is E(H,x)=0.0317. This coincides
with inequalities (31).

5. CONCLUSIONS

By investigating information transmission in
continuous-time multivariable LTI systems, relations
between mutual information rates and H, entropies
were formulated. The H,, entropies of stable open- and
closed-loop transfer functions were proved to be
upper bounded by mutual information rates between
system inputs to outputs. Especially, the H,, entropy of
closed-loop system is related to mutual information
rate in open-loop system. A new H, bound for H.,
entropy was introduced with an illustrative example.
These relations formulate information descriptive
property of the H, entropy, and provide potential
instruments for analysis and design of stochastic
control systems.
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