• Title/Summary/Keyword: state constraint

Search Result 336, Processing Time 0.055 seconds

A Methodology for Consistent Design of User Interaction (일관성 있는 사용자 인터랙션 설계를 위한 방법론 개발)

  • Kim, Dong-San;Yoon, Wan-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.961-970
    • /
    • 2009
  • Over the last decade, interactive devices such as mobile phones have become complicated drastically mainly because of feature creep, the tendency for the number of features in a product to rise with each release of the product. One of the ways to reduce the complexity of a multi-functional device is to design it consistently. Although the definition of consistency is elusive and it is sometimes beneficial to be inconsistent, in general, consistently designed systems are easier to learn, easier to remember, and causing less errors. In practice, however, it is often not easy to design the user interaction or interface of a multi-functional device consistently. Since the interaction design of a multi-functional device should deal with a large number of design variables and relations among them, solving this problem might be very time-consuming and error-prone. Therefore, there is a strong need for a well-developed methodology that supports the complex design process. This study has developed an effective and efficient methodology, called CUID (Consistent Design of User Interaction), which focuses on logical consistency rather than physical or visual consistency. CUID deals with three main problems in interaction design: procedure design for each task, decisions of available operations(or functions) for each system state, and the mapping of available operations(functions) and interface controls. It includes a process for interaction design and a software tool for supporting the process. This paper also demonstrates how CUID supports the consistent design of user interaction by presenting a case study. It shows that the logical inconsistencies of a multi-functional device can be resolved by using the CUID methodology.

  • PDF

Channel-forming discharge calculation and stable channel section evaluation for downstream reach of Yeongju dam in Naesung stream (내성천의 영주댐 하류 구간의 하도형성유량 산정 및 안정하도 단면 평가)

  • Jang, Eun-Kyung;Ahn, Myeonghui;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Channel-forming discharge for downstream section of Yeongju dam in Naesung stream was calculated to analyze stable channel geometry. Determined channel-forming discharge was applied to design stable channel slope, depth, and base width at Yonghyeol station. Used data for channel-forming discharge and stable channel analysis were collected in downstream section of Yeongju dam in Naesung stream before the dam construction. Specified recurrence interval discharge, effective discharge, and bankfull discharge were analyzed and compared to decide final channel-forming discharge which was $260m^3/s$ of bankfull discharge. Stable channel analysis and design program was applied to predict stable channel section of width, depth, and slope with various sediment transport equations of Ackers and White, Brownlie, Engelund and Hansen, and Yang's equations. As a result, all equations of sediment transport produced milder slopes compared to current bed slope of 0.00177 and Ackers and White equation presented the most similar flow depth of current section with the design constraint of current channel width.

Fabric Mapping and Placement of Field Programmable Stateful Logic Array (Field Programmable Stateful Logic Array 패브릭 매핑 및 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, the Field Programmable Stateful Logic Array (FPSLA) was proposed as one of the most promising system integration technologies which will extend the life of the Moore's law. This work is the first proposal of the FPSLA design automation flow, and the approaches to logic synthesis, synchronization, physical mapping, and automatic placement of the FPSLA designs. The synchronization at each gate for pipelining determines the x-coordinates of cells, and reduces the placement to 1-dimensional problems. The objective function and its gradients for the non-linear optimization of the net length and placement density have been remodeled for the reduced global placement problem. Also, a recursive algorithm has been proposed to legalize the placement by relaxing the density overflow of bipartite bin groups in a top-down hierarchical fashion. The proposed model and algorithm are implemented, and validated by applying them to the ACM/SIGDA benchmark designs. The output state of a gate in an FPSLA needs to be duplicated so that each fanout gate can be connected to a dedicated copy. This property has been taken into account by merging the duplicated nets into a hyperedge, and then, splitting the hyperedge into edges as the optimization progresses. This yields additional 18.4% of the cell count reduction in the most dense logic stage. The practicality of the FPSLA can be further enhanced primarily by incorporating into the logic synthesis the constraint to avoid the concentrated fains of gates on some logic stages. In addition, an efficient algorithm needs to be devised for the routing problem which is based on a complicated graph. The graph models the nanowire crossbar which is trimmed to be embedded into the FPSLA fabric, and therefore, asymmetric. These CAD tools can be used to evaluate the fabric efficiency during the architecture enhancement as well as automate the design.

Pre-Packing, Early Fixation, and Multi-Layer Density Analysis in Analytic Placement for FPGAs (FPGA를 위한 분석적 배치에서 사전 패킹, 조기 배치 고정 및 밀도 분석 다층화)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.96-106
    • /
    • 2014
  • Previous academic research on FPGA tools has relied on simple imaginary models for the targeting architecture. As the first step to overcome such restriction, the issues on analytic placement and legalization which are applied to commercial FPGAs have been brought up, and several techniques to remedy them are presented, and evaluated. First of all, the center of gravity of the placed cells may be far displaced from the center of the chip during analytic placement. A function is proposed to be added to the objective function for minimizing this displacement. And then, the density map is expanded into multiple layers to accurately calculate the density distribution for each of the cell types. Early fixation is also proposed for the memory blocks which can be placed at limited sites in small numbers. Since two flip-flops share control pins in a slice, a compatibility constraint is introduced during legalization. Pre-packing compatible flip-flops is proposed as a proactive step. The proposed techniques are implemented on the K-FPGA fabric evaluation framework in which commercial architectures can be precisely modeled, and modified for enhancement, and validated on twelve industrial strength examples. The placement results show that the proposed techniques have reduced the wire length by 22%, and the slice usage by 5% on average. This research is expected to be a development basis of the optimization CAD tools for new as well as the state-of-the-art FPGA architectures.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Security of Ethernet in Automotive Electric/Electronic Architectures (차량 전자/전기 아키텍쳐에 이더넷 적용을 위한 보안 기술에 대한 연구)

  • Lee, Ho-Yong;Lee, Dong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.39-48
    • /
    • 2016
  • One of the major trends of automotive networking architecture is the introduction of automotive Ethernet. Ethernet is already used in single automotive applications (e.g. to connect high-data-rate sources as video cameras), it is expected that the ongoing standardization at IEEE (IEEE802.3bw - 100BASE-T1, respectively IEEE P802.3bp - 1000BASE-T1) will lead to a much broader adoption in future. Those applications will not be limited to simple point-to-point connections, but may affect Electric/Electronic(EE) Architectures as a whole. It is agreed that IP based traffic via Ethernet could be secured by application of well-established IP security protocols (e.g., IPSec, TLS) combined with additional components like, e.g., automotive firewall or IDS. In the case of safety and real-time related applications on resource constraint devices, the IP based communication is not the favorite option to be used with complicated and performance demanding TLS or IPSec. Those applications will be foreseeable incorporate Layer-2 based communication protocols as, e.g., currently standardized at IEEE[13]. The present paper reflects the state-of-the-art communication concepts with respect to security and identifies architectural challenges and potential solutions for future Ethernet Switch-based EE-Architectures. It also gives an overview and provide insights into the ongoing security relevant standardization activities concerning automotive Ethernet. Furthermore, the properties of non-automotive Ethernet security mechanisms as, e.g., IEEE 802.1AE aka. MACsec or 802.1X Port-based Network Access Control, will be evaluated and the applicability for automotive applications will be assessed.

A Weighted Frequent Graph Pattern Mining Approach considering Length-Decreasing Support Constraints (길이에 따라 감소하는 빈도수 제한조건을 고려한 가중화 그래프 패턴 마이닝 기법)

  • Yun, Unil;Lee, Gangin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Since frequent pattern mining was proposed in order to search for hidden, useful pattern information from large-scale databases, various types of mining approaches and applications have been researched. Especially, frequent graph pattern mining was suggested to effectively deal with recent data that have been complicated continually, and a variety of efficient graph mining algorithms have been studied. Graph patterns obtained from graph databases have their own importance and characteristics different from one another according to the elements composing them and their lengths. However, traditional frequent graph pattern mining approaches have the limitations that do not consider such problems. That is, the existing methods consider only one minimum support threshold regardless of the lengths of graph patterns extracted from their mining operations and do not use any of the patterns' weight factors; therefore, a large number of actually useless graph patterns may be generated. Small graph patterns with a few vertices and edges tend to be interesting when their weighted supports are relatively high, while large ones with many elements can be useful even if their weighted supports are relatively low. For this reason, we propose a weight-based frequent graph pattern mining algorithm considering length-decreasing support constraints. Comprehensive experimental results provided in this paper show that the proposed method guarantees more outstanding performance compared to a state-of-the-art graph mining algorithm in terms of pattern generation, runtime, and memory usage.

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.

Dynamic Optimization of a Reactive Distillation Column Producing Methyl Acetate (메틸 아세테이트 생산을 위한 반응증류 공정의 동적 최적화)

  • Kim, Jiyong;Kim, Junghwan;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.739-746
    • /
    • 2008
  • The aim of this study is finding the optimal design parameters and the optimal operation variables of a reactive distillation column. Different from steady state optimization, dynamic optimization makes it possible considering operation ability as well as design problems at process design step. For performing dynamic optimization, dynamic simulation should be done first. If dynamic simulation is already finished, dynamic optimization can be performed with less effort than that of dynamic simulation.Reactive distillation systems involving reaction and separation in a single unit have the potential to reduce capital and operating costs, particularly when reaction have conversion constraint or when azeotropes exist making conventional separation difficult and expensive. This study here present work on the continuous distillation process, the homogeneous catalyzed esterification of methanol and acetic acid, the synthesis of methyl acetate. Based on an equilibrium stage model of a reactive distillation column a dynamic optimization problem was formulated and solved. And the results were verified by performing dynamic simulation and showing the variation of conversion and purity as the variation of the operation variables. As the results of dynamic optimization, this study found optimal feed ratio, reflux ratio and reboiler duty of this system. And as this study applied it to dynamic simulations the dynamic characteristics of a reactive distillation column are showed under optimal operating condition.

A Study on the Efficiency of Join Operation On Stream Data Using Sliding Windows (스트림 데이터에서 슬라이딩 윈도우를 사용한 조인 연산의 효율에 관한 연구)

  • Yang, Young-Hyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this thesis, the problem of computing approximate answers to continuous sliding-window joins over data streams when the available memory may be insufficient to keep the entire join state. One approximation scenario is to provide a maximum subset of the result, with the objective of losing as few result tuples as possible. An alternative scenario is to provide a random sample of the join result, e.g., if the output of the join is being aggregated. It is shown formally that neither approximation can be addressed effectively for a sliding-window join of arbitrary input streams. Previous work has addressed only the maximum-subset problem, and has implicitly used a frequency based model of stream arrival. There exists a sampling problem for this model. More importantly, it is shown that a broad class of applications for which an age-based model of stream arrival is more appropriate, and both approximation scenarios under this new model are addressed. Finally, for the case of multiple joins being executed with an overall memory constraint, an algorithm for memory allocation across the join that optimizes a combined measure of approximation in all scenarios considered is provided.