• Title/Summary/Keyword: start condition

Search Result 432, Processing Time 0.023 seconds

Enterprise Network Weather Map System using SNMP (SNMP를 이용한 엔터프라이즈 Network Weather Map 시스템)

  • Kim, Myung-Sup;Kim, Sung-Yun;Park, Jun-Sang;Choi, Kyung-Jun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.93-102
    • /
    • 2008
  • The network weather map and bandwidth time-series graph are popularly used to understand the current and past traffic condition of NSP, ISP, and enterprise networks. These systems collect traffic performance data from a SNMP agent running on the network devices such as routers and switches, store the gathered information into a DB, and display the network performance status in the form of a time-series graph or a network weather map using Web user interface. Most of current enterprise networks are constructed in the form of a hierarchical tree-like structure with multi-Gbps Ethernet links, which is quietly different from the national or world-wide backbone network structure. This paper focuses on the network weather map for current enterprise network. We start with the considering points in developing a network weather map system suitable for enterprise network. Based on these considerings, this paper proposes the best way of using SNMP in constructing a network weather map system. To prove our idea, we designed and developed a network weather map system for our campus network, which is also described in detail.

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.

Hemodynamic study of Pneumatic Artificial Heart Implanted in Calves (송아지에 이식한 공기구동형 인공심장의 혈역학적 연구)

  • 박표원
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.438-451
    • /
    • 1990
  • Pneumatic total artificial heart[TAH] has been clinically applied for the purpose of permanent or temporary use followed by cardiac transplantation in the patients with end stage heart diseases. In spite of the good durability of the pneumatic TAH, thrombus formation, bleeding and infection resulted in death. The Tomasu heart, which is a type of pneumatic TAH, was used in this study. This model is a modified Jarvik heart and consists of atrial cuffs, outflow vascular grafts and thin-layer seamless diaphragm type of ventricles. Cardiac outputs of the left artificial heart were measured by Donovan`s mock circulation under variable conditions of driving parameters, and an experimental artificial heart implantation was performed in 4 calves to observe the changes of hemodynamic parameters in early postoperative period and hematologic and bio-chemical changes in a long-term survival case. In the mock circulation test, cardiac output of the heart was increased with the increase of the left atrial pressure and left driving pressure. Maximum cardiac output was obtained at the heart rate of 120 to 130/min and percent systole of 40 to 45Zo under the condition of a constant left driving pressure of 180mmHg and left atrial pressure of 10mmHg. During the first 24 hours of TAH pumping, driving pressure ranged from 178$\pm$5mmHg to 187$\pm$8mmHg for the left heart and from 58$\pm$6mmHg to 78$\pm$28mmHg for the right heart. The Mean arterial pressure significantly increased between 2 and 8 hours after the start of pumping. The survival time ranged from 27 hours to 46 days. The causes of death were respiratory failure in 2 cases, mechanical valve failure in one, and left ventricular outflow obstruction due to thrombus in a 46-day survival case. This study demonstrated that Tomasu artificial heart operated effectively during the first 24 hours of artificial heart pumping, but thrombus formation around the valve holding area was the main problem in long-term survival case.

  • PDF

Rolling Contact Fatigue Behavior and Microstructure Control to Medium Carbon Steel Base Hot Forgings (중탄소계 열간단조품의 미세조직과 구름피로거동)

  • Lee J. S.;Son C. H.;Moon H. K.;Song B. H.;Park C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • Once hot forgings for automotive parts such as wheel bearing flange to which cyclic asymmetric bending stress is continuously applied are produced, it is necessary to control their microstructure to obtain superior mechanical properties. It is however hard to control the microstructure uniformly because the strength is reduced as coarsening of ferrite grains. To investigate the microstructural alteration according to process variables during hot working, the variation of the ferrite grain size was studied by utilizing of the computer aided servo-hydraulic Gleeble tester which is hot deformation behavior reproduction equipment. In addition, the effect of the ferrite grain size of raw material on the austenite grain behavior of hot forgings was also examined. The rolling contact fatigue resistance of the induction hardened SAE 1055 steel was compared with the occasion of the same condition of SAE52100 bearing steel. As a result, it was confirmed that the ferrite grain sizes of the forgings depend on the heating temperature and cooling start temperature during hot forging and cooling processes. The induction hardened SAE1055 steel showed a superior rolling contact fatigue resistance to the induction hardened SAE52100 steel. The reason is that SAE1055 steel is freer from the material defect such as segregation than the comparative steel.

  • PDF

Groundwater flow Analysis Using MODFLOW in the Tunnel (MODFLOW를 이용한 터널의 지하수 유동해석)

  • Hue, Chang-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.129-142
    • /
    • 2003
  • In this study, the conduct of underground water flow system with 3 dimensions is interpreted in order to examine closely the actual condition regarding the flow of the underground water which is forecast from the tunnel segment and the interpretation result which selects the design and the construction technique of the tunnel segment was applied. Also, an obstacle to construct that relates with the underground water flow in construction duration in advance will be able to apply with information that is necessary in order to establish the countermeasure. The objective tunnel is the BEOPGI tunnel segment that is 2 parallel tunnels that are a one-way 2 lane and the parameters of the MODFLOW model executing the boring investigation and the permeability examination were presumed. The underground water flow of the excavation tunnel inside was interpreted by the MODFLOW model using the parameters which is presumed and two values which compared with calculated value and observed value are the same almost. Also, when the underground water discharge quantify that followed in tunnel excavation tries to compare, the underground water total discharge quantity from tunnel point of start until destination was presumed as 0.0269㎥/day/$m^2$.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Effects of Rear Diffuser Size on the Driving Performance of a Passenger Car (자동차의 주행 성능에 미치는 리어 디퓨저 크기의 영향)

  • Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.655-661
    • /
    • 2019
  • This study examined the change in driving performance according to the starting position of the rear diffuser of a vehicle. To accomplish this, the CATIA 3D design program was used to model the vehicle with reference to a commercial SUV vehicle and design the rear diffuser to start from 300, 400, and 500 mm from the rear tire. The flow and drag change were analyzed and the change in air flow was confirmed using Fluent, a flow analysis program at a vehicle traveling speed of 60, 100, and 140 km/h. The rear diffuser reduced the lift and drag forces compared to no diffuser regardless of the starting position. This is because if there is a rear diffuser, it will reduce the vortex phenomenon by suppressing the flow separation that occurs when air is drawn out from the rear portion of the vehicle. In this study, the starting point SP 400 was determined to be the optimal condition because the lift force was the smallest at SP 400 and the lift reduction effect was the best.

A Low-Voltage Self-Startup DC-DC Converter for Thermoelectric Energy Harvesting (열에너지 수확을 위한 저전압 자율시동 DC-DC 변환기)

  • Jeong, Hyun-Jin;Kim, Dong-Hoon;Kim, Hoe-Yeon;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.520-523
    • /
    • 2016
  • This paper describes a DC-DC converter with MPPT control for thermoelectric energy harvesting. The designed circuit converts low voltage harvested from a thermoelectric generator into higher voltage for powering a load. A start-up circuit supplies VDD to a controller, and the controller turns on and off a NMOS switch of a main-boost converter. The converter supplies the boosted voltage to the load through the switch operation. Bulk-driven comparators can do the comparison under low voltage condition and are used for voltage regulation. Also, bulk-driven comparators raise system's efficiency. A peak conversion efficiency of 76% is achieved. The proposed circuit is designed in a 0.35um CMOS technology and its functionality has been verified through simulations. The designed chip occupies $933um{\times}769um$.

  • PDF

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.