• 제목/요약/키워드: stars: emission-line

검색결과 69건 처리시간 0.028초

LONG-SLIT SPECTROSCOPY OF PARSEC-SCALE JETS FROM DG TAURI

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.113-123
    • /
    • 2015
  • We present observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, [O i] λλ6300, 6363, [N ii] λλ6548, 6584, and [S ii] λλ6716, 6731 are obtained. The kinematics and physical properties (i.e., electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650′′ distance from the source. For HH 158, the radial velocity ranges from −50 to −250 km s−1. The proper motion of the knots is 0.′′196 − 0.′′272 yr−1. The electron density is ∼104 cm−3 close to the star, and decreases to ∼102 cm−3 at 14′′ away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. HH 702 is located at 650′′ from the source. It shows ∼ −80 km s−1 in the radial velocity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated to be about ∼ 10−7 M yr−1, which is similar to values obtained from previous studies.

ALMA OBSERVATIONS OF W HYDRAE: IMPACT OF MISSING BASELINES

  • Do, Thi Hoai;Pham, Tuan Anh;Pham, Tuyet Nhung;Darriulat, Pierre;Pham, Ngoc Diep;Nguyen, Bich Ngoc;Tran, Thi Thai
    • 천문학회지
    • /
    • 제54권6호
    • /
    • pp.171-182
    • /
    • 2021
  • The lack of short baselines, referred to as the short-spacing problem (SSP), is a well-known limitation of the performance of radio interferometers, causing a reduction of the flux detected from source structure on large angular scales. The very large number of antennas operated in the Atacama Large Millimeter/sub-millimeter Array (ALMA) generates situations for which the impact of the SSP takes a complex form, not simply measurable by a single number, such as the maximal recoverable scale. In particular, extended antenna configurations, complemented by a small group of closeby antennas at the centre of the array, may result in a double-humped baseline distribution with a significant gap between the two groups. In such cases one should adopt as the effective maximal recoverable scale the one associated with the extended array and use only the central array to recover missing flux, as one would do with single dish or ACA (Atacama Compact Array) observations. The impact of the missing baselines can be very important and may easily be underestimated, or even overlooked. The present study uses ALMA archival data of the 29SiO(8-7) line emission of the AGB star W Hydrae for a demonstration. A critical discussion of the reliability of the observations away from the star is presented together with comments of a broader scope. Properties of the circumstellar envelope of W Hya within ~15 au from the star, many of which are not mentioned in the published literature, are briefly described and compared with R Doradus, an AGB star having properties very similar to W Hya.

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

PATIAL DISTRIBUTION OF STAR FORMATION ACTIVITY ON NGC 253 BY FIR AND RADIO EMISSION LINES

  • Takahashi, H.;Matsuo, H.;Nakanishi, K.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.261-262
    • /
    • 2012
  • The aim of this research is to reveal the spatial distribution of the star formation activity of nearby galaxies by comparing CO molecular emission lines with the large area observation in far-infrared (FIR) lines. We report the imaging observations of NGC 253 by FIR forbidden lines via FIS-FTS and CO molecular lines from low to high excitation levels with ASTE, which are good tracers of star forming regions or photo-dissociation regions, especially spiral galaxies, in order to derive the information of the physical conditions of the ambient interstellar radiation fields. The combination of spatially resolved FIR and sub-mm data leads to the star formation efficiency within galaxy. The ratio between the FIR luminosity and molecular gas mass, $L_{FIR}/M_{H_2}$, is expected to be proportional to the number of stars formed in the galaxy per unit molecular gas mass and time. Moreover the FIR line ux shows current star formation activity directly. Furthermore these can be systematic and statistical data for star formation history and evolution of spiral galaxies.

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Optical Long-slit Spectroscopy of Parsec-scale Jets

  • 오희영;표태수;육인수;김강민;이성호;박병곤
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.55.2-55.2
    • /
    • 2013
  • We present the observational study of parsec-scale jets from YSOs reaching lengths of several arc-minutes. The medium-resolution spectroscopic data were obtained between 6000 - $7000{\AA}$ with BOAO long-slit spectrograph. By performing multi-position observation, we investigated the physical variation of the jets and the ambient gas along the whole path of the jets. The flux, electron density, ionization fraction, and electron temperature are discussed with the estimated line ratios between from [OI], [NII], $H{\alpha}$ and [SII] emission lines. This study carried out with more than 8 jets of YSOs including low- to intermediate-mass stars. We also briefly discuss the kinematics of the outflows using spatial and spectroscopic data.

  • PDF

NEAR-INFRARED SPECTROSCOPY OF YOUNG GALACTIC SUPERNOVA REMNANTS

  • KOO, BON-CHUL;LEE, YONG-HYUN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.145-148
    • /
    • 2015
  • Young Galactic supernova remnants (SNRs) are where we can observe closely supernova (SN) ejecta and their interaction with the circumstellar/interstellar medium. They also provide an opportunity to explore the explosion and the final stage of the evolution of massive stars. Near-infrared (NIR) emission lines in SNRs mostly originate from shocked dense material. In shocked SN ejecta, forbidden lines from heavy ions are prominent, while in shocked circumstellar/interstellar medium, [Fe II] and $H_2$ lines are prominent. [Fe II] lines are strong in both media, and therefore [Fe II] line images provide a good starting point for the NIR study of SNRs. There are about twenty SNRs detected in [Fe II] lines, some of which have been studied in NIR spectroscopy. We will review the NIR [Fe II] observations of SNRs and introduce our recent NIR spectroscopic study of the young core-collapse SNR Cas A where we detected strong [P II] lines.

OPTICAL INVESTIGATION OF THE CRAB PULSAR: SIMULTANEOUS UBVR LIGHT CURVES WITH TIME RESOLUTION OF 3.3 ${\mu}s$ AND SPECTROSCOPY

  • KOMAROVA V. N.;BESKIN G. M.;NEUSTROEV V. V.;PLOKHOTNICHENKO V. L.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.217-218
    • /
    • 1996
  • The results of the Crab pulsar observations with the photometrical MANIA (Multichannel Analysis of Nanosecond Intensity Alterations) complex at the 6-m telescope are presented. More than 12 millions photons in UBVR-bands simultaneously with time resolution of $10^{-7}s$ were detected. Using the original software for search for optical pulsar period, we obtained the light curves of the object with time resolution of about 3.3 ${\mu}s$. Their detailed analysis gives the spectral change during pulse and subpulse, the shape of the pulse peaks, which are plateaus (with the duration of about 50${\mu}s$ for the main pulse), limits for an amplitude of fine temporal (stochastic and regular) structure of pulse and sub pulse and the interpulse space intensity. The results of CCD-spectroscopy of the Crab pulsar show that its summarized spectrum is flat. There are no lines, neither emission nor absorbtion ones. Upper limit for line intensity or depth is $3.5\%$ with the confidence probability of $95\%$.

  • PDF

MONITORING OBSERVATIONS OF H2O AND SiO MASERS TOWARD POST-AGB STARS

  • Kim, Jaeheon;Cho, Se-Hyung;Yoon, Dong-Hwan
    • 천문학회지
    • /
    • 제49권6호
    • /
    • pp.261-288
    • /
    • 2016
  • We present the results of simultaneous monitoring observations of $H_2O$ $6_{1,6}-5_{2,3}$ (22GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both $H_2O$ and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect $H_2O$ maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected $H_2O$ masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the $H_2O$ maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3${\rightarrow}$OH13.1+5.1${\rightarrow}$OH16.1-0.3${\rightarrow}$OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the $H_2O$ maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and $H_2O$ masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the $1.2-160{\mu}m$ spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.

ON THE NATURE OF SODIUM EXCESS OBJECTS

  • Jeong, Hyunjin;Yi, Sukyoung K.;Kyeong, Jaemann;Sarzi, Marc;Sung, Eon-Chang;Oh, Kyuseok
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.47.2-47.2
    • /
    • 2014
  • Several studies have reported the presence of sodium excess objects having neutral atomic absorption lines at $5895{\AA}$ (NaD) and $8190{\AA}$ that are deeper than expected based on stellar population models that match the stellar continuum. The origin of these lines is therefore hotly debated. van Dokkum & Conroy proposed that low-mass stars (0.3M) are more prevalent in massive early-type galaxies, which may lead to a strong NaI 8190 line strength. It is necessary to test this prediction, however, against other prominent optical line indices such as NaD, Mgb, and Fe5270, which can be measured with a significantly higher signal-to-noise ratio than NaI 8190. We identified a new sample of roughly one thousand NaD excess objects (NEOs; ~8% of galaxies in the sample) based on NaD line strength in the redshift range 0.00$H{\beta}$ line strengths and significant emission lines, which are indicative of the presence of young stellar populations. This result implies that the presence of the interstellar medium and/or dust contributes to the increase in NaD line strengths observed for these galaxies.

  • PDF