DOI QR코드

DOI QR Code

MONITORING OBSERVATIONS OF H2O AND SiO MASERS TOWARD POST-AGB STARS

  • Received : 2016.10.25
  • Accepted : 2016.12.09
  • Published : 2016.12.31

Abstract

We present the results of simultaneous monitoring observations of $H_2O$ $6_{1,6}-5_{2,3}$ (22GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both $H_2O$ and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect $H_2O$ maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected $H_2O$ masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the $H_2O$ maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3${\rightarrow}$OH13.1+5.1${\rightarrow}$OH16.1-0.3${\rightarrow}$OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the $H_2O$ maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and $H_2O$ masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the $1.2-160{\mu}m$ spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.

Keywords

References

  1. Acker, A., Marcout, J., Ochsenbein, F., et al. 1992, The Strasbourg-ESO Catalogue of Galactic Planetary Nebulae. Parts I, II (Garching: ESO)
  2. Alcolea, J., Bujarrabal, V., & Gallego, J. D. 1989, v=3, J=1-0 SiO Maser Emission from Evolved Stars, A&A, 211, 187
  3. Baud, B., Habing, H. J., Matthews, H. E., & Winnberg, A. 1979, A Systematic Search at 1612 MHz for OH Maser Sources II. A Large-Scale Survey Between $10^{\circ}{\leq}l{\leq}150^{\circ}\;and\;|b|4.2^{\circ}$, A&AS, 36, 193
  4. Bojicic, I. S., Parker, Q. A., Filipovic, M. D., & Frew, D. J. 2011, Radio-Continuum Detections of Galactic Planetary Nebulae - I. MASH PNe Detected in Large-Scale Radio Surveys, MNRAS, 412, 223 https://doi.org/10.1111/j.1365-2966.2010.17900.x
  5. Brand, J., Cesaroni, R., Caselli, P., et al. 1994, The Arcetri Catalogue of $H_2O$ Maser Sources Update, A&AS, 103, 541
  6. Bujarrabal, V., Alcolea, J., Sanchez Contreras, C., & Colomer, F. 1996, The Anomalous SiO Maser Transition v=2, J=2-1, A&A, 314, 883
  7. Chen, P. S., Szczerba, R., Kwok, S., & Volk, K. 2001, Properties of OH/IR Stars with IRAS LRS Spectra, A&A, 368, 1006 https://doi.org/10.1051/0004-6361:20010098
  8. Cho, S.-H., Chung, H.-S., Kim, H.-R., et al. 1998, Observations of SiO (v=0, 1, 2) J=3-2 and J=2-1 Emission in Late-type Stars, ApJS, 115, 277 https://doi.org/10.1086/313083
  9. Cho, S.-H, Kaifu, N., & Ukita, N. 1996, SiO Maser Survey of Late-Type Stars. I. Simultaneous Observations of Six Transitions of $^{28}SiO\;and\;^{29}SiO$, A&AS, 115, 117
  10. Cho, S.-H, Kaifu, N., Ukita, N., Morimoto, M., & Hayashi, M. 1986, High Sensitivity SiO Maser Survey for Mira Variables, Ap&SS, 118, 237 https://doi.org/10.1007/BF00651131
  11. Cho, S.-H., & Kim, J. 2012, Simultaneous Observations of SiO and $H_2O$ Masers toward Known Stellar SiO Maser Sources, AJ, 144, 129 https://doi.org/10.1088/0004-6256/144/5/129
  12. Cho, S.-H., Lee, C. W., & Park, Y.-S. 2007, First, Detection of the SiO (v=3, J=2-1) Maser Emission from $\chi$ Cygni, ApJ, 657, 482 https://doi.org/10.1086/510837
  13. Deacon, R. M., Chapman, J. M., Green, A. J., & Sevenster, M. N. 2007, $H_2O$ Maser Observations of Candidated Post-AGB Stars and Discovery of Three High-Velocity Water Sources, ApJ, 658, 1096 https://doi.org/10.1086/511383
  14. Deguchi, S., Fujii, T., Glass, I. S., et al. 2004, SiO Maser Survey of IRAS Sources in the Inner Galactic Disk, PASJ, 56, 765 https://doi.org/10.1093/pasj/56.5.765
  15. Deguchi, S., Nakashima, J., Kwok, S., & Koning, N. 2007, Identification of Very Red Counterparts of SiO Maser and OH/IR Objects in the Glimpse Survey, ApJ, 664, 1130 https://doi.org/10.1086/519154
  16. Desmurs, J.-F., Bujarrabal, V., Lindqvist, M., et al. 2014, SiO Masers from AGB Stars in the Vibrationally Excited v=1, v=2, and v=3 states, A&A, 565, A127 https://doi.org/10.1051/0004-6361/201423550
  17. Engels, D. 2002, Water Vapor Masers in Stars Departing from the AGB, A&A, 388, 252 https://doi.org/10.1051/0004-6361:20020483
  18. Engels, D., Etoka, S., Gerard, E., & Richards, A. 2015, Phase-Lag Distances of OH Masing AGB Stars, ASPC, arXiv:1503.05675v1
  19. Engels, D., & Jimenez-Esteban, F. 2007, Lifetime of OH Masers at the Tip of the Asymptotic Giant Branch, A&A, 475, 941 https://doi.org/10.1051/0004-6361:20078250
  20. Garcia-Hernandez, D. A., Perea-Calderon, J. V., Bobrowsky, M., & Garcia-Lario, P. 2007, SPITZER IRS Spectroscopy of High-Mass Precursors of Planetary Nebulae, ApJ, 666, L33 https://doi.org/10.1086/521673
  21. Gomez, Y., Moran, J. M., & Rodriguez, L. F. 1990, $H_2O$ and SiO Maser Emission in OH/IR Stars, RMxAA, 20, 55
  22. Han, S.-T., Lee, J.-W., Kang, J., et al. 2013, Korean VLBI Newtowrk Receiver Optics for Simultaneous Multifrequency Observation: Evaluation, PASP, 125, 539 https://doi.org/10.1086/671125
  23. Herman, J., & Habing, H. J. 1985, Time Variations and Shell Sizes of OH Masers in Late-Type Stars, A&AS, 59, 523
  24. Hu, J. Y., Slijkhuis, S., de Jong, T., & Jian, B. W. 1993, A Systematic Study of IRAS Selected Proto-Planetary Nebula Candidates. I. Selection of the Sample and Observations of the Southern Objects, A&AS, 100, 413
  25. Imai, H., Nakashima, J., Deguchi, S., et al. 2010, Japanese VLBI Network Mapping of SiO v=3, J=1-0 Maser Emission in W Hydrae, PASJ, 62, 431 https://doi.org/10.1093/pasj/62.2.431
  26. Imai, H., Oyadomari, M., Chong, S. N., et al. 2012, Pilot VLBI Survey of SiO v=3, J=1-0 Maser Emission around Evolved Stars, PASJ, 64, L6 https://doi.org/10.1093/pasj/64.6.L6
  27. Imai, H., Sahai, R., & Morris, M. 2007, The Spatio-Kinematical Structure and Distance of the Preplanetary Nebula IRAS 19134+2131, ApJ, 669, 424 https://doi.org/10.1086/521350
  28. Imai, H., Tafoya, D., Honma, M., Hirota, T., & Miyaji, T. 2011, Annual Parallax Distance and Kinematical Property of $H_2O$ Masers in IRAS 19312+1950, PASJ, 63, 81 https://doi.org/10.1093/pasj/63.1.81
  29. Jewell, P. R., Walmsley, C. M., Wilson, T. L., & Snyder, L. E. 1985, New Detections of Maser and Thermal SiO Emission, ApJ, 298, L55 https://doi.org/10.1086/184566
  30. Justtanont, K., Olofsson, G., Dijkstra, C., & Meyer, A. W. 2006, Near-Infrared Observations of Water-Ice in OH/IR Stars, A&A, 450, 1051 https://doi.org/10.1051/0004-6361:20054569
  31. Kang, J., Cho, S.-H., Kim, H.-G., et al. 2006, Time Monitoring Observations of SiO J=2-1 and J=3-2 Maser Emission toward Late-Type Stars, ApJS, 165, 360 https://doi.org/10.1086/504523
  32. Kim, J., Cho, S.-H., & Kim, S. J. 2014, Statistical Studies Based on Simultaneous SiO and $H_2O$ Maser Surveys toward Evolved Stars, AJ, 147, 22
  33. Kim, J., Cho, S.-H., Oh, C. S., & Byun, D.-Y. 2010, Simultaneous Observations of SiO and $H_2O$ Masers toward Known Stellar SiO and $H_2O$ Maser Sources, ApJS, 188, 209 https://doi.org/10.1088/0067-0049/188/1/209
  34. Kohoutek, L. 2001, Version 2000 of the Catalogue of Galactic Planetary Nebulae, A&A, 378, 843 https://doi.org/10.1051/0004-6361:20011162
  35. Kwok, S. 2008, Stellar Evolution from AGB to Planetary Nebulae, in Proc. IAU Symp. 252, The Art of Modelling Stars in the 21th Century, ed. L. Deng & K.L. Chan, 197
  36. Lewis, B. M. 1989, The Chronological Sequence of Circumstellar Masers: Identifying proto-Planetary Nebulae, ApJ, 338, 234 https://doi.org/10.1086/167194
  37. Lewis, B. M. 1994, Supplement to the Arecibo 1612MHz Survey of Color-Selected IRAS Sources, ApJS, 93, 549 https://doi.org/10.1086/192067
  38. Likkel, L., & Morris, M. 1988, The Circumstellar Water Fountains of IRAS 16342−3814: A Very High Velocity Bipolar Outflow, ApJ, 329, 914 https://doi.org/10.1086/166435
  39. Molster, F. J., Waters, L. B. F. M., Trams, N. R., et al. 1999, The Composition and Nature of the Dust Shell surrounding the Binary AFGL 4106, A&A, 350, 163
  40. Nakashima, J., & Deguchi, S. 2000, Detections of SiO and $H_2O$ Masers in the Bipolar Nebula IRAS 19312+1950, PASJ, 52, L43 https://doi.org/10.1093/pasj/52.5.L43
  41. Nakashima, J., & Deguchi, S. 2003, SiO Maser Survey of Cold IRAS Sources, PASJ, 55, 229 https://doi.org/10.1093/pasj/55.1.229
  42. Nakashima, J., & Deguchi, S. 2007, Correlation between Infrared Colors and Intensity Ratios of SiO Maser Lines, ApJ, 669, 446 https://doi.org/10.1086/520825
  43. Nakashima, J., Deguchi, S., Imai, H., Kemball, A., & Lewis, B. M. 2011, Maser Properties of the Enegmatic IRAS Source 19312+1950, ApJ, 728, 76 https://doi.org/10.1088/0004-637X/728/2/76
  44. Nakashima, J., Deguchi, S., & Kuno, N. 2004, Study of the Bipolar Nebula IRAS 19312+1950. I. Mapping Observations, PASJ, 56, 193 https://doi.org/10.1093/pasj/56.1.193
  45. Nakashima, J., Ladeyschikov, D. A., Sobolev, A. M., et al. 2016, Wide Field CO Mapping in the Region of IRAS 19312+1950, ApJ, 825, 16 https://doi.org/10.3847/0004-637X/825/1/16
  46. Nyman, L.-A., Hall, P. J., & Olofsson, H. 1998, SiO Masers in OH/IR Stars, Proto-Planetary and Planetary Nebulae, A&AS, 127, 185 https://doi.org/10.1051/aas:1998343
  47. Olofsson, H., Rydbeck, O. E. H., Lane, A. P., & Predmore, C. R. 1981, Detection of the SiO (v=2, J=2-1) Maser, ApJ, 247, L81 https://doi.org/10.1086/183594
  48. Olofsson, H., Rydbeck, O. E. H., & Nyman, L.-A. 1985, The Peculiar SiO (v=2, J=2-1) Maser in  Cygni, A&A, 150, 169
  49. Ramos-Larios, G., Guerrero, M. A., Suarez, O., Miranda, L. F., & Gomez, J. F. 2009, Searching for heavily obscured post-AGB stars and planetary nebulae, I. IRAS candidates with 2MASS PSC counterpars, A&A, 501, 1207 https://doi.org/10.1051/0004-6361/200811552
  50. Reid, M. J. & Moran, J. M. 1981, Masers, ARA&A, 19, 231 https://doi.org/10.1146/annurev.aa.19.090181.001311
  51. Sahai, R. & Trauger, J. T. 1998, Multipolar Bubbles and Jets in Low-excitation Planetary Nebulae: toward a new understanding of the Formation and Shaping of Planetary Nebulae, AJ, 116, 1357 https://doi.org/10.1086/300504
  52. Scalise Jr., E. & Lepine, R. D. 1978, Detection of a New Transition of SiO in OH/IR Stars, A&A, 65, L7
  53. Sevenster, M. N. 2002, OH-selected AGB and post-AGB objects. I. Infrared and Maser Properties, AJ, 123, 2772 https://doi.org/10.1086/339827
  54. Sevenster, M. N. 2002, OH-selected AGB and post-AGB objects. II. Blue versus Red evolution off the asymptotic giant branch, AJ, 123, 2788 https://doi.org/10.1086/339828
  55. Sevenster, M. N., van Langevelde, H. J., Moody, R. A., et al. 2001, The ATCA/VLA OH 1612MHz survey, III. Observations of the Northern galactic plane, A&A, 366, 481 https://doi.org/10.1051/0004-6361:20000354
  56. Soria-Ruiz, R., Alcolea, J., Colomer, F., et al. 2004, High Resolution Observations of SiO masers: Comparing the Spatial Distribution at 43 and 86GHz, A&A, 426, 131 https://doi.org/10.1051/0004-6361:20041139
  57. Soria-Ruiz, R., Alcolea, J., Colomer, F., Bujarrabal, V., & Desmurs, J.-F. 2007, Mapping the Circumstellar SiO Maser Emission in R Leonis, A&A, 468, L1 https://doi.org/10.1051/0004-6361:20077554
  58. Soria-Ruiz, R., Colomer, F., Alcolea, J., et al. 2005, First, VLBI Mapping of Circumstellar $^{29}SiO$ Maser emission, A&A, 432, L39 https://doi.org/10.1051/0004-6361:200500015
  59. Suarez, O., Garcia-Lario, P., Manchado, A., et al. 2006, A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS point source catalogue, A&A, 458, 173 https://doi.org/10.1051/0004-6361:20054108
  60. Suarez, O., Gomez, J. F., Miranda, L. F., et al. 2009, Water maser detections in Southern candidate post-AGB stars and Planetary nebulae, A&A, 505, 217 https://doi.org/10.1051/0004-6361/200911777
  61. Sylvester, R. J., Kemper, F., Barlow, M. J., et al. 1999, 2.4-197 ${\mu}m$ Spectroscopy of OH/IR stars: the IR characteristics of Circumstellar Dust in O-rich Environments, A&A, 352, 587
  62. Szczerba, R., Siodmiak, N., Stasinska, G., & Borkowski, J. 2007, An evolutionary catalogue of galactic post-AGB and related objects, A&A, 469, 799 https://doi.org/10.1051/0004-6361:20067035
  63. van der Veen, W. E. C. J. & Habing, H. J. 1988, The IRAS two-colour Diagram as a Tool for Studying Late stages of stellar evolution, A&A, 194, 125
  64. van Hoof, P. A. M., Oudmaijer, R. D., &Waters, L. B. F. M. 1997, The Spectral Evolution of post-Asymptotic Giant Branch Stars, MNRAS, 289, 371 https://doi.org/10.1093/mnras/289.2.371
  65. Vinkovic, D., Blocker, T., Hofmann, K.-H., Elitzur, M., & Weigelt, G. 2004, Bipolar outflow on the Asymptotic Giant Branch - the case of IRC+10011, MNRAS, 352, 852 https://doi.org/10.1111/j.1365-2966.2004.07972.x
  66. Waters, L. B. F. M., Molster, F. J., de Jong, T., et al. 1996, Mineralogy of Oxygen-rich Dust Shells, A&A, 315, L361
  67. Yoon, D.-H, Cho, S.-H., Kim, J., Yun, Y., & Park, Y.-S. 2014, SiO and $H_2O$ maser Survey toward post-Asymptotic Giant Branch and Asymptotic Giant Branch stars, ApJS, 211, 15 https://doi.org/10.1088/0067-0049/211/1/15
  68. Zijlstra, A. A., Chapman, J. M., te Lintel Hekkert P., et al. 2001, Bipolar outflows in OH/IR stars, MNRAS, 322, 280 https://doi.org/10.1046/j.1365-8711.2001.04113.x

Cited by

  1. Quasi-simultaneous 43 and 86 GHz SiO Maser Observations and Potential Bias in the BAaDE Survey Are Resolved vol.862, pp.2, 2018, https://doi.org/10.3847/1538-4357/aaccf3