• Title/Summary/Keyword: stable element

Search Result 607, Processing Time 0.032 seconds

Temperature Stable Time-to-Digital Converter (온도변화에 안정한 시간-디지털 변환 회로)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.799-804
    • /
    • 2012
  • To converter time information to digital information Time-to-Digital Converter(TDC) is designed by using analog delay elements. To obtain the temperature stable characteristics the circuit is designed and the operation of the designed circuit is confirmed by HSPICE. The characteristics variation of the designed delay element with temperature is from -0.18% to 0.126% compared to room temperature characteristics when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. Time difference is from -0.18% to 0.12% compared to room temperature characteristic when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. The time difference is simulated when the digital output is 15. However the time difference is from -1.09% to 1.28% in the TDC using temperature non-stable analog delay elements.

Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations

  • Kwon Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2004
  • High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm) formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving two benchmark problems. This new formulation incorporates proper polynomial interpolations of the log­arithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly preserves the positive definiteness of the conformation tensor. In this study, we present an alternative pro­cedure for deriving the tensor-logarithmic representation of the differential constitutive equations and pro­vide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement of the computational algorithm with stable convergence has been demonstrated and it seems that there exists appropriate mesh convergence even though this conclusion requires further study. It is thought that this new formalism will work only for a few differential constitutive equations proven globally stable. Thus the math­ematical stability criteria perhaps play an important role on the choice and development of the suitable con­stitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic formulation.

A STUDY ON THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE STRESSES ACCORDING TO THE CURVATURE OF ARCH AND PLACEMENT OF IMPLANTS (악궁의 만곡도 및 임플랜트 위치에 따른 삼차원적 유한요소 응력분석)

  • Lee, Don-Oh;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.1
    • /
    • pp.98-129
    • /
    • 1995
  • The purpose of this study was to evaluate how mandibular implant-supported fixed complete prosthesis, implant and mandible responded mechanically, according to curvature of arch, number and location of fixture, and amounts of load. The shape of mandibular arch was tapered or square form and, 4 or 6 fixtures were implanted in each arch model. A vertical load of 10kg was applied at the center of prosthesis and a vertical load of 20kg was applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant. Three-dimensional finite element analysis was performed for stress distribution and deflection using commercial software(ABAQUS program) for Sun-SPARC Workstation. The results were as follows : 1. The case square arch form was more stable to compare with that of tapered arch form in respect of stress distribution and displacement under vertical load on the center of prosthesis. 2. 6-implants cases were more stable than 4-implants cases for decreasing bending torque under vertical load on the center of prosthesis. 3. Under vertical load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cantilever in respect of stress distribution and displacement. 4. Under vertical load on cantilever extension, 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing of the bending stiffness of the prosthesis than 4-implant case. 5. When the ends of 10mm or 20mm long cantilever were loaded, the most distal implant was under compressive stress but the second most distal implant was under the highest tensile stress and the remaining implants were under varying tensile stress. 6. Because 6-implants cases had smaller displacement than 4-implants cases, 6-implants cases were more favorable in respect of prevention of screw loosening under repeated loadings.

  • PDF

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

hp-Version of the Finite Element Analysis for Reissner-Mindlin Plates (Reissner-Mindlin 평판의 hp-Version 유한요소해석)

  • Woo, Kwang Sung;Lee, Gee Doug;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1993
  • This paper is concerned with formulations of the hierarchical $C^{\circ}$-plate element on the basis of Reissner-Mindlin plate theory. On reason for the development of the aforementioned element based on Integrals of Legendre shape functions is that it is still difficult to construct elements based on h-version concepts which are accurate and stable against the shear locking effects. An adaptive mesh refinement and selective p-distribution of the polynomial degree using hp-version of the finite element method are proposed to verify the superior convergence and algorithmic efficiency with the help of the simply supported L-shaped plate problems.

  • PDF

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.