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Abstract

High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably
difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and
proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been
made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm)
formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor
has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first
presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving
two benchmark problems. This new formulation incorporates proper polynomial interpolations of the log-
arithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly
preserves the positive definiteness of the conformation tensor. In this study, we present an alternative pro-
cedure for deriving the tensor-logarithmic representation of the differential constitutive equations and pro-
vide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement
of the computational algorithm with stable convergence has been demonstrated and it seems that there exists
appropriate mesh convergence even though this conclusion requires further study. It is thought that this new
formalism will work only for a few differential constitutive equations proven globally stable. Thus the math-
ematical stability criteria perhaps play an important role on the choice and development of the suitable con-
stitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more
essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic
formulation.

Keywords : high Deborah number, tensor-logarithm, constitutive equation, stability, Leonov model, con-

traction flow

1. Introduction

Numerical modeling of viscoelastic flow around a sharp
comer has posed great challenge in computational non-
Newtonian fluid dynamics, because it is extremely difficult
to obtain solutions in the case of high Deborah (or Weis-
senberg) number flows. For viscoelastic fluid, the Deborah
number defined as the ratio of liquid relaxation time to
characteristic time of the flow expresses strength of elas-
ticity accumulated in the flow. There are several reasons
conjectured for the failure of the numerical convergence at
high Deborah number in the planar 4:1 contraction flow
modeling, the representative benchmark flow problem with
singular geometry. It has been recognized that computa-
tional algorithm certainly plays a significant role in deter-
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mining the stability of the numerical scheme. However the
applied viscoelastic constitutive equation is thought to be
also responsible for the numerical degradation. Nowadays
one has come to a conclusion that selection of an appro-
priate constitutive equation constitutes a very crucial step
although implementing a suitable numerical technique is
still important for successful discrete modeling of non-
Newtonian flows (Leonov, 1995).

Irrespective of extensive stability analysis performed for
the constitutive equations as well as astonishing develop-
ment of computational algorithm, it is indeed frustrating
that even the viscoelastic model proven globally stable
shows quite unsatisfactory limitation of computational con-
vergence whatever numerical algorithm may be applied.
Recently a breakthrough in this field seems to have been
made by Fattal and Kupferman (2004). They have sug-
gested simple tensor-logarithmic transform of the confor-
mation tensor in the differential viscoelastic constitutive
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equations and proved existence of such representation for
differential constitutive models. Their idea is based on the
following. The conformation tensor shows exponential
dependence in regions of high strain rate for high Deborah
number flows, and the polynomial interpolation of this
behavior is inappropriate. If one employs its logarithmic
function instead of the conformation tensor, the multipli-
cation is substituted by the addition operation, and thus the
polynomial interpolation of this logarithm function is
thought to be proper and more effective in the spatial res-
olution of steep stress gradients.

In addition, this new formulation may grant another
important characteristic. It is well known that the positive-
definiteness of the conformation tensor is crucial for well-
posedness of its evolution equation (Dupret and Marchal,
1986; Kwon and Leonov, 1995). In reality, even for the
constitutive equations proven Hadamard stable (Hadamard
stability means the well-posedness of constitutive equa-
tions under short and high frequency wave disturbance),
violation of this positive-definiteness is frequently
observed (Dupret et al., 1985; Lee et al.,, 2004) probably
due to the spatial discretization error. However if we intro-
duce this tensor-logarithm for the conformation tensor, the
positive-definiteness is strictly preserved in any compu-
tational scheme and at any value of the Deborah number.
Seemingly limitless convergence of the approximation
scheme has already been reported in numerical compu-
tation of benchmark viscoelastic flow problems such as lid-
driven cavity flow (Fattal and Kupferman, 2004) and flow
past a cylinder in a straight pipe (Hulsen, 2004).

At this point, it is not certain that this new formalism
based on tensor-logarithm transform can successfully work
for every differential constitutive equation that can be writ-
ten in the conformation tensor notation. Even if the exist-
ence of the tensor-logarithm representation for differential
viscoelastic models has been proven (Fattal and Kupfer-
man, 2004), it is not at all obvious that this sole refor-
mulation stabilizes the computational scheme for any set of
equations. In the current author’s opinion, mathematical
stability analysis of constitutive equations may provide
quite feasible insight into optimal choice of viscoelastic
models. Especially for Maxwell-type differential and time-
strain separable single integral constitutive equations, one
can find extensive and detailed results on mathematical sta-
bility (Joseph 1990; Kwon 2002; Kwon and Leonov 1995).

In this study we first present an alternative procedure
obtaining the tensor-logarithmic formulation of the vis-
coelastic equations originally suggested by Fattal and Kup-
ferman (2004). Then this procedure is applied to the 2D
description of the Leonov model, which becomes more
important and also the simplest especially in this formal-
ism. We consider the isothermal incompressible inertialess
4:1 contraction flow problem to test this new represen-
tation in high Deborah number flow modeling.
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2. Tensor-logarithmic formulation of the consti-
tutive equation

Most of differential viscoelastic constitutive equations
can be written into the following quite general form:

é—VvT‘c—c-Vv+éVI=0 (1)

Here ¢ is the conformation tensor that describes the mac-
romolecular conformation under flow for the constitutive
models based on molecular kinetic theory, v is the velocity,
¢ = %% = %—ct-+v -Vc is the material time derivative of ¢, V is
the usual gradient operator in tensor calculus, é—Vv' ¢
—c- Vv is the upper convected time derivative, and 0 is the
relaxation time. Y is usually represented as the polynomial
of ¢ with coefficients possibly dependent on the invariants
of ¢ or e=(Vv+Vv')/2, whose specific form has to be
given by the constitutive equation employed. For example,
the upper convected Maxwell model can be rewritten as
Eq.(1) with y=¢ — & and its extra-stress takes the form of
T= G(c — ) with G as the modulus. More examples can be
found in Kwon and Leonov (1995) and Lee et al. (2004).
The conformation tensor ¢ reduces to the unit tensor & in
the rest state and this condition also serves as the initial
condition in the start-up flow situation. In contrast, for the
Leonov model that has been derived from the irreversible
thermodynamics and thus is not endowed with molecular
concept, the c-tensor explains the accumulated elastic
strain in the Finger measure during flow. In the asymptotic
limit of 8— where the material exhibits purely elastic
behavior, it becomes the total Finger strain tensor.

The essential idea presented by Fattal and Kupferman
(2004) in reformulating the constitutive equations is the
tensor-logarithmic transformation of ¢ as follows:

h=logc. (2)

Here the logarithm operates as the isotropic tensor func-
tion, which implies the identical set of principal axes for
both ¢ and h. In the case of the Leonov model, this A
becomes another measure of elastic strain, that is, twice the
Hencky elastic strain.

In this section, a simple alternative derivation of the ten-
sor-logarithmic transform for Eq.(1) (formulation of the
constitutive equation in terms of k) originally given by Fat-
tal and Kupferman (2004), is suggested. For this purpose
we adopt following notations:
¢;: eigenvalues of ¢, f;: eigenvalues of &, n;: corresponding
unit eigenvectors.

Here due to the isotropic function relation, ¢ and & have
the same set of eigenvectors. The characteristic relation for
¢ is written as

c-n;=cn; (no sum). 3)

Differentiation and scalar product with another eigenvector
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yield
n;-é-n;=¢,6;+(c;—cpn;-n; (No sum). 4

We may rewrite it as

i) ¢;=n;¢-n; when i=j

(no sum). 5)

i) n;n;= n;-¢-n; when i#j

i
For h-tensor, an equivalent relation is readily obtained as

nj~li~ni=I%,-5,-j+(h,-—hj)ﬂ,-~nj (no sum). ©6)

Due to Eq.(2), one has c; = ¢" and thus = %éi (no sum)

holds. With this and Egs.(5), Eq.(6) represents the fol-
lowing resultant relation for the time variation of A-tensor:

i) n,-~l'z-n,-=clc',~=lni~é-n,~ when i=j
i) nyhon= (h=h)iyn=——In,-é-n;,  when i%j
¢i—¢;
(no sum). @)

When one denotes @ as the orthogonal matrix that trans-
forms ¢ or A into the corresponding diagonal form ¢ or &
in principal axes, the following simple relations hold:

) i e' 00
c=0-exp(h)-Q', exp(h)=é= 0% ol 8)

007

The orthogonal matrix @ contains the eigenvectors n; as its
column vectors. In principle, all the components of nr; and
eigenvalues /; can be obtained by solving the characteristic
equation for &, even though obtaining its analytic expression
may become a formidable task in 3D flow domain. If we sub-
stitute the constitutive equation (1) for ¢ in Egs.(7) that does
not contain the derivative of ¢ any more and utilize the solu-
tion of the characteristic equation for Ak, then Eqs.(7) even-
tually represent the desired constitutive relation written in
terms of k. For (i, j) such as (1,1), (2,2), (3,3), (1,2), (2,3) and
(1,3), Eqgs.(7) yield exactly 6 differential equations for 4.

Above derivation holds in every flow situation except
when there locally exists 2D or 3D isotropy. However in
this case, the relation yields simpler equation. Without loss
of generality, we assume that n; and n, (i#j) are the vec-
tors perpendicular to the cylindrical symmetry axis (i.e. n;
and n; are contained in the plane of isotropy). Then ¢; =¢;,
h; = h;, and n; and n; are indeterminate except the fact that
they consist in the isotropic plane. Since the asymptotic

. hi—h; . . . -
relation lim i1 is valid, Eqs.(7) combine to n;-h - n;
=k, C;i—C; ¢

| —

n;-¢-n; Using the representation for n; in terms of A,

%)

i

Korea-Australia Rheology Journal

and h; and applying appropriate asymptotic relations, we
possibly obtain corresponding constitutive equations in A-
tensor form. Since the original constitutive model (1) in the
¢ formulation is known to be regular for c; = ¢;, such trans-
formation into A-form certainly exists. In the following
sections we present illustrative example in simple planar
2D flow with numerical results for the Leonov constitutive
equation.

3. Formulation in 2D flow

In the case of 2D planar flow, the direction orthogonal to
the computation domain automatically constitutes one fixed
eigenvector. Here we designate the axes of flow domain as
x; and x,. When we write the first eigenvector as the fol-
lowing, the second eigenvector is determined accordingly:

1

n
n, =
Ny

Solving the characteristic equation of &, one obtains
1 A/_ﬁ
hy = S[hy +hy+y(hy =hyp) +4hy ],
1 J—23
h, = E[hn*'hzz* (hy —hy) +4hy,7],

__n2

, and then n,= with r?+n?=1. ©))

m

[\

. hiy’ o (h=hy)’
= 2 » = 2 2
(hy=hy) +hyy (hy=~hy) +hyy
hi,(h~h
nyn, = 12(hy . 1) . (10)
(hy=hy) +hy,

In the rest state, all 4; and the eigenvalues vanish, and
therefore the components of the eigenvector become inde-
terminate as can be seen from the equations. In Eqs.(10),
the two characteristic values may be interchanged, how-
ever the resultant constitutive equations remain invariable.

In this simple 2D consideration, Eqs.(7) with (9) rep-
resent 3 equations as

2, ; 27 L, 5. . 2.
nih+2n 5k 4 nyhoy = — (076 + 200,56, +n56,),
C

25 , 27, 1 5. . 2,
nyhn=2nnhi+nthyn = ;(n2c11—2n1n2c12+n1cz2),
2

. s aus .
—n b+ (ny=n3)hi+ iy

_h-h

c—Cy

; 2 o .
[=nnyé +(ni=n3)C 4 nynyly, ). (Ih

Substitution of the specific constitutive equations for ¢;
with Eqgs.(10) and transformation rule (8) eventually yields
the desired set of viscoelastic field equations in 2D rep-
resented in h-tensor form.

From now on, only the Leonov constitutive equation
(Leonov, 1976) is considered. Its one simple version has
the following form for the evolution equation (1) and the

stress relation:
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RIS _ Y
—2([2) (c+ 3 c—3), 1—6(3)c,

3(3?1)[@}1“_]} (12

Here I, =tr¢ and L =tr¢™" are basic invariants of ¢, and
they coincide in planar flows. In order to rigorously exam-
ine the computational robustness of the formulation we do
not include any retardation (Newtonian viscous) term that
bestows stabilizing effect on the numerical scheme by aug-
menting the elliptic character in equations of motion. The
extra-stress tensor is obtained from the elastic potential W
based on the Murnaghan’s relation. Since the extra-stress s
invariant under the addition of arbitrary isotropic terms,

. AN
when we present our numerical results we use 7= G(EI) X

— &) instead in order to set O for the stress in the rest
state. In addition to the linear viscoelastic parameters, it
contains 2 nonlinear constants m and n, which can be
determined from simple shear and uniaxial extensional
flow experiments. The value of the parameter m does not
have any effect on the flow characteristics in 2D situation,
since two invariants are equal.

These Leonov equations contain one essential feature
that becomes especially important and practically useful in
current tensor-logarithmic formulation as follows:

detc=1. (13)

It can be seen as the first integral of the evolution equation
(1), and it implies the liquid is incompressible (this relation
is derived from the fact that volume change during the flow
is completely recoverable). In 2D it reduces to c”c22~6122
= 1. Since the logarithmic function transforms the multi-
plication into the operation of addition, this incompress-
ibility relation (13) becomes

trh =0, (14)

which dramatically simplifies all the relations derived
above. In addition, it gives another advantage in com-
putation. For example, in 3D due to A, +hy,+h;;=0 one
can eliminate one variable (and accordingly one equation)
from the set of governing equations. In this 2D analysis,
we remove h,, from the set, and thus the viscoelastic
model contains only 2 additional unknowns such as 4y,
and h,,. Based on our numerical scheme explained after-
wards, the computation time has diminished to a half.

Now employing Eq.(14), one can get simplified version
of Eqgs.(10) valid only for the Leonov model as

hy=h= Vh112+h,22, h, =-h,

2 10 o 1) _
n1—2(1+h), nz—z(l—h) mity = 2 (15)

Then the evolution relation (11) for A; becomes

186

2 ) ; “h, 9. . 5.
(n?=nd)hi+2n k1 = € (né ) + 21158 1+ 15Cs)),
N b o ko2, . 2.
(ni—n)hi+2nnyh12 = e (ny¢,=2nn,¢ 5 +n1Cy),
; 2 2y 2h . 2 2\ - .
2nnyhi~(ni=ny)hiz= h__h["lnzcn—(’ll—”2)012—”1”‘2022]-
e —e
(16)
Subtraction of the first two equations yields 0 = ¢,,¢;,—2¢, X

Crp+CpCp = gt(det ¢) that merely illustrates equivalence of

. n —h
these two equations (here we used ¢, =e'ni+e nj,

czz=e_hnf+ehn§, and ¢, = (eh+efh)n1n2). Thus we can
safely remove one equation from further consideration.

When we insert all the necessary relations (15) and (1)
with (12) and then solve for #; and ki, following final
form of viscoelastic equations in h form results:

oh,, ohy, Ohy 2 2 2 e+ e\,
7-!-\/1 aXI +V28x _—Z(h” +h12 h h e*"jaxl
_h, [h“(l he e j+1}%—h [h”@ he e }1}8—”
s e 0x, " e —e dx,
le' =™
to o =0
ah,2 ahlz

v ah12—2h“h12(1 heh+e7h)avl
"ox, X, 28x2 X ox,

1 've ?ﬁ
_[h (h thy, he_ )h”}axz

L 2 e Vo, 2, A 17
—]? |2+11m+ 3 92h 12=0. an

e —¢€

Here again h=.h, +h,,’, and the initial condition is
h=0. Together with the equations of continuity and
motion, they constitute a complete set to describe iso-
thermal incompressible viscoelastic flow in 2D. However
due to the form presented in Eqs.(17), artificial numerical
difficulty may arise. Except for the case of rest state, dur-
ing flow vanishing of the eigenvalue h (it means h =0)
may occur locally, e.g. along the centerline in the fully
developed Poiseuille flow through a straight pipe. Then the

v,
coefficients of a—:’ and h; become apparently indetermi-

j
nate. However proper introduction of asymptotic relation
for vanishing % results in
dohy, ah” dh,, _dv, av, av, 1
AT 2ax2_28x1_h128x2+h128x rgn0
oh oh oh
at]2+vl 9%, 2+ Vz'a‘xi2 ”)8 11)8

when h=0. (18)

~(1-h ~(1+h,)—=+= h,2 0,

When one employs a Newton’s method in solving the non-
linear equations, partial derivatives of the coefficients are
to be specified. For example, denoting the coefficient of
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]
a—;—' in the first of Eqs.(17) as ¢(hy, h;;) we have
1

eX) h|1h|22|— +e’ 2h
=2 =2 2-h —( ) ,
ohy, nt L e \e"—e"
and its limit behavior becomes Ba%zo when h=0.
11

We want to make a last additional remark on the h-tensor
formulation of the Leonov model. Even in the simplified
2D case, the constitutive relation appears to be quite awk-
ward in its tensor-logarithmic form (17), however the
Leonov equation suggests the simplest of all nonlinear vis-
coelastic differential equations (and thus possibly the sim-
plest of all viscoelastic constitutive models) due to the
existence of the first integral, Eq.(13) or (14). Hence in the
current author’s opinion, this viscoelastic model forms the
most efficient and practical equations in modeling espe-
cially 3D viscoelastic flows, where we may have to apply
for the eigenvalues the cubic formula, the analytical
expression of the roots for a cubic polynomial.

4. Numerical scheme

We investigate planar 4:1 abrupt contraction flow with

Vi,
[ fully developed
| ' velogity profile
boundaryaQ2
boundary an
boundary 0Q2, Hv
Problem
Domain
fully developed
velocity profile 4H,
oouncand, | [ ] 14,
X

092, : essential boundary condition for velocity (v =0)
090, : essential boundary condition for velocity

082, : symmetric boundary condition

042, : essential boundary condition for velocity and h

Fig. 1. Boundary conditions of the 4:1 contraction flow problem.
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centerline symmetry. The flow geometry and boundary
conditions are illustrated in Fig. 1. We apply no-slip
boundary condition at the wall and specify symmetric nat-
ural boundary on the centerline. To remove indeterminacy
of pressure, we also set the pressure variable at the exit
wall. Fully developed flow conditions are applied for the
velocity and h tensor at the inlet but only for the velocity
at the outlet. When we denote the half width of the down-
stream channel as H,, we set the length of the downstream
channel as 15H, and the length of the reservoir as 20H,,.
Even though the downstream channel length is rather short
to achieve fully developed flow, in order to alleviate com-
putational burden we simply choose this flow geometry,
and it seems that the length of the downstream channel
does not have any effect on the stability of the compu-

2 o
(a
0k
-2
0 ' 2 4
2
(b)
0
-2
0 2 4

Fig. 2. Partial view of the (a) coarse and (b) fine meshes
employed in this study.
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tational procedure.

‘With the standard Galerkin formulation adopted as basic
computational framework, either streamline-upwinding
(SU) or streamline-upwind/Petrov-Galerkin (SUPG) method
as well as discrete elastic viscous stress splitting (DEVSS)
algorithm is implemented in order to build relatively robust
numerical scheme at high Deborah number flows. The
upwinding algorithm developed by Gupta (1997) has been
applied. The SU method additionally adds to the original
Galerkin formulation an inconsistent upwind term that
gives only the first order accuracy in spatial discretization.
However the SUPG scheme is consistent and endows a
second order accuracy. Even though we report in this paper
results based on both upwinding algorithms, we are mainly
concemed with results under the SUPG method. Two types
of meshes are employed for the computation, and they are
illustrated in Fig. 2. The coarse mesh (Fig. 2a) has the
smallest corner element with the side length of 0.1H,,
while the fine mesh (Fig. 2b) contains the smallest one
with the side length of 0.05H,. Corresponding mesh details
are given in Table 1. As has been mentioned beforehand,
in the h-formulation we have fewer unknowns.

Linear for pressure and strain rate and quadratic inter-
polation for velocity and h-tensor are applied for spatial
continuation of the variables. In this work, we only con-
sider steady inertialess flow of the isothermal incompress-
ible liquid. In order to mimic dimensionless formulation,
we simply assign unit values for G and 6 and adjust the
Deborah number by the variation of the average flow rate.
The Deborah number in this contraction flow is usually
defined as

Ue

De=F0, (19)
where U is the average downstream velocity. Also n= 0.1
is set to guarantee the mathematical stability even in stress
predefined flow history (Kwon and Leonov, 1995) (e.g. in
the situation where one assigns traction boundary condi-
tions at the inlet and outlet), whereas n = 0 corresponds to
the case of neo-Hookean potential in finite elasticity.

In order to solve the large nonlinear system of equations
introduced, the Newton iteration is used in linearizing the

the solution convergence, the L., norm scaled with the
maximum value in the computational domain is employed.
Hence when the variation of each nodal variable in the
Newton iteration does not exceed 10~ of its value in the
previous iteration, the algorithm concludes that the con-
verged solution is attained. For the viscoelastic variables,
we examine the relative error in terms of the eigenvalue of
the c-tensor. We have found that this convergence criterion
imposes less stringent computational procedure, and it
seems quite practical and appropriate since we mainly
observe the results in terms of physically meaningtul c-ten-
sor or stress rather than h.

5. Results and discussion

The convergence limit in the scale of the Deborah num-
ber is listed in Table 2 for the original ¢-formulation and
the logarithm-transformed h-formulation. With the SUPG
method, in the conventional c-tensor representation the
convergence limits are 3.2 for the coarse mesh and as low
as 0.3 for the fine mesh. In addition to this severe lim-
itation of flow rate in computation, one can observe steep
decrease of the limit Deborah number with the mesh
refinement. On the contrary, when we switch to the A-ten-
sor equations, we can examine huge increase of the limit
Deborah number to 132 and even higher value of 193 in
finer discretization. Even though the results under the SU
scheme are not major concern in this work due to its lower
order accuracy, they deserve a brief summary. Even though
the limit value is relatively high, it decreases as the mesh
becomes finer under the c-formulation. However with the
logarithmic tensor formulation the limit values exceed 200
for both meshes and we simply have stopped further com-
putation due to no further interest.

In Fig. 3 the streamlines at the highest Deborah number

Table 2. Limit of Deborah numbers achievable for each mesh
types under the SUPG method with each constitutive
formulation indicated (the limit value for the SU scheme
is given inside the parenthesis)

Coarse mesh (Fig. 2a) Fine mesh (Fig. 2b)

system and the frontal elimination method is implemented ;’iomullau.on 133; (1‘;%)0 19(;'3 (65())0
for solution update. As an estimation measure to determine -formulation (> 200) (> 200)
Table 1. Total numbers of elements, nodes and variables for two meshes

No. of No. of No. of No. of
elements linear nodes quadratic nodes unknowns

c-formulation 44330

h 4 0 7

Coarse mes h-formulation 349] 192 330 37000

. c-formulation 89555

Fine mesh h-formulation 7174 3835 14843 24712

188
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gl |

90 2 4

Fig. 3. Streamlines at De = 193 for the fine mesh (Fig. 2b) com-
puted with the SUPG method.

of 193 for the fine mesh is depicted, where the size of the
corner vortex reaches almost twice the half width of the
reservoir channel. Fig. 4 illustrates highly inhomogeneous
distribution of elastic potential and normal and shear
stresses, respectively, all of which display extremely steep
variation near the corner. Near the corner these three rheo-
logical variables achieve their maximum values such as
Wi =939, T,,=189 and |7.),,.=31. In Fig. 5 the
extra-stress profiles are shown as a function of y (the flow
direction) at x=1 (scaled with Hp). Thus the region of
0<y<5 means the location at the downstream wall. Here
we do not observe fluctuation of stress variables along the
wall, which have been frequently examined in many pub-
lications. At this point, we do not intend to explain this dif-
ference in results. This disappearance of numerical artifacts
may be due either to this appropriate formulation or to the
constitutive equations employed herein. At least, one may
observe one proper tendency that the peaks of the stress
variables become sharper as the mesh becomes finer.
The important advantage of this new formulation in com-
putational rheology consists not only in the stabilizing
effect of the whole numerical scheme demonstrated just
now, but also in appropriate mesh convergence possibly
achievable with this formalism since finer discretization
seems to yield better convergence. Even though Hulsen
(2004) and Fattal and Kupferman (2004) have reported
almost unlimited convergence with this A-formulation, in
this current flow geometry one may not be able to expect
such unconditional numerical stability since there exists

Korea-Australia Rheology Journal

Fig. 4. Contour lines of (a) elastic potential W, (b) normal stress
in the flow direction and (c) shear stress at De = 193 for
the fine mesh (Fig. 2b) computed with the SUPG method.

comer singularity. In this type of computational domain,
even the linear problem exhibits singular behavior, that is,
the gradient of the solution function approaches infinity
(actually integrable singularity) near the corner (e.g.
Johnson, 1995). In this case, mesh refinement resolves
such difficulty, in other words the solution becomes more
accurate as the discretization refines. However until now,
there has been no conclusive result in viscoelastic flow
modeling, and most probably finer mesh in finite element
analysis deteriorates the numerical scheme more severely
(Crochet et al., 1984; Baaijens, 1998).

With thorough examination of all the available results
obtained until now (Hulsen, 2004; Fattal and Kupferman,
2004) including the one in this manuscript, there is rel-
atively high possibility of eventual resolution of the high
Deborah number flow problem, even though more exten-
sive study of mesh convergence, etc. in various flow geom-
etries is certainly required. At least, one may conclude that
this formalism seems quite promising and deserves inten-
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(a) 70
coarse mesh
—=—— fine mesh

60 1

50 4
=
EN

AP

(b)

Xy

coarse mesh
- fing mesh

Fig. 5. Extra-stress profiles along the downstream wall (x = 1) at
De =100 for the coarse and fine meshes (Fig. 2) com-
puted with the SUPG method: (a) the normal stress T, in
the flow direction, (b) shear stress 7.

sive further investigations.

In the author’s opinion, understanding why this new for-
mulation completely equivalent to the original model equa-
tions preserves better numerical characteristics and
verifying whether it may work well for all other trans-
formable differential constitutive equations, are extremely
crucial. First, as mentioned by Fattal and Kupferman
(2004), the polynomial interpolation of the logarithm of ¢
seems quite appropriate and efficient, since inside the vis-
coelastic boundary layer or near the singular corer the
solution of ¢ exhibits steep exponential variation and this
logarithmic formulation transforms exponential depen-
dence into linear or polynomial one.

At this point, it is worthwhile to examine more carefully
the result given by Hulsen (2004), where the benchmark
problem of flow around a cylinder inside a straight pipe
has been considered. When implementing this k-formal-
ism, he has observed almost limitless numerical conver-
gence with the Giesekus model, whereas almost no
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improvement has been attained with the Oldroyd-B equa-
tion. The cause of this substantial difference is clearly evi-
dent if one is well aware of the mathematical stability
characteristics of these two equations. There is one the-
orem on the positive definiteness of the conformation ten-
sor ¢ and its boundedness proven for the differential
constitutive equations (Hulsen, 1990; Leonov, 1992;
almost all available stability results are summarized in
Kwon and Leonov, 1995). The upper-convected Maxwell
and thus the Oldroyd-B models violate this theorem, and
their unbounded stress behavior in uniaxial extensional
flow in the strain rate exceeding the half of reciprocal
relaxation time is this well-known example. However the
Giesekus model with the numerical parameter (written as o
in Kwon and Leonov, 1995) not exceeding 1/2 is always
mathematically stable when we include the Newtonian
term or consider only pre-defined strain history. Similar
trend may be seen in finite element modeling of contrac-
tion flow in c-formalism (Lee er al., 2004).

It has been known for quite long time that the confor-
mation tensor ¢ has to remain strictly positive-definite in
the whole flow domain at all time, the violation of which
immediately invokes the Hadamard instability (Dupret and
Marchal, 1986; Kwon and Leonov, 1995). Even for the
constitutive equations proven Hadamard stable, numerical
error seems to cause the violation of the positive-defi-
niteness (Dupret et al., 1985; Lee et al., 2004). The tensor-
logarithmic transformation by Fattal and Kupferman
(2004) rigorously preserves this essential requirement,
which seems to be the most important among all features
in this formulation.

Note that for some differential constitutive equations
even the positive-definiteness of the conformation tensor is
not guaranteed (Kwon and Leonov, 1995; Kwon and Cho,
2001), for which the tensor-logarithmic transform itself is
not valid at all. Therefore it is quite certain that this k-ten-
sor formulation will work in the high Deborah number
flow modeling only for very limited versions of consti-
tutive equations. As a conclusion, the stability criteria sug-
gested in Kwon and Leonov (1995) may play an important
role on the choice of viscoelastic equations in flow mod-
eling and even on formulating new constitutive relations.

6. Conclusions

We present an alternative procedure obtaining the tensor-
logarithm representation of the differential constitutive
equations for the conformation tensor, which has been sug-
gested originally by Fattal and Kupferman (2004). Con-
crete example of the procedure is also given in 2D case and
numerical result for 4:1 planar contraction flow has been
demonstrated with the Leonov constitutive equation. The
result shows better convergence with mesh refinement as
well as astonishing stabilization of the numerical scheme.
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This new formalism exactly equivalent to the original con-
stitutive model seems to work extremely well as long as
proper viscoelastic field equations are employed. This ten-
sor-logarithm formulation, if applied with careful consid-
eration of mathematical stability of viscoelastic models,
seems quite promising and possibly resolves the high Deb-
orah number problems in computational rheology.
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