• 제목/요약/키워드: stable element

검색결과 607건 처리시간 0.024초

Nonlinear inelastic analysis of steel-concrete composite beam-columns using the stability functions

  • Park, Jung-Woong;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.763-785
    • /
    • 2008
  • In this study, a flexibility-based finite element method considering geometric and material nonlinearities is developed for analyzing steel-concrete frame structures. The stability functions obtained from the exact buckling solution of the beam-column subjected to end moments are used to accurately capture the second-order effects. The proposed method uses the force interpolation functions, including a moment magnification due to the axial force and lateral displacement. Thus, only one element per a physical member can account for the interaction between the bending moment and the axial force in a rational way. The proposed method applies the Newton method based on the load control and uses the secant stiffness method, which is computationally both efficient and stable. According to the evaluation result of this study, the proposed method consistently well predicts the nonlinear inelastic behavior of steel-concrete composite frames and gives good efficiency.

탄성파 진행 문제를 위한 Paraxial 경계조건의 유한요소해석에 관한 연구 (A Study on Finite Element Analysis with Paraxial Boundary Conditions for Elastic Wave Propagation)

  • 김희석;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.33-38
    • /
    • 2008
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. Paraxial boundary conditions(PBCs) which are kinds of absorbing boundary conditions based on paraxial approximations of the scalar and elastic wave equations not only lead to well-posed problem but also are stable and computationally inexpensive. But the complex mathematical forms of PBCs with partial derivatives complicate the application of those to finite element analysis. In this paper a penalty functional is newly proposed for applying PBCs into finite element analysis and the existence and uniqueness of the extremum of the proposed functional is demonstrated. The numerical verification of the efficiency is carried out through comparing PBCs with a viscous boundary condition.

  • PDF

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.

불연속 갤러킨 방법에 의한 상미분방정식의 유한요소해석 (Finite Element Solution of Ordinary Differential Equation by the Discontinuous Galerkin Method)

  • 김지경
    • 전산구조공학
    • /
    • 제6권4호
    • /
    • pp.83-88
    • /
    • 1993
  • 시간변수에 대하여 불연속성을 주는 시간불연속 Galerkin 방법을 유한요소법으로 해석하였다. 이 방법은 미분방정식 관점에서 지금까지 요소간에 연속성을 준 일반적 유한요소법과 다르게 임의의 시간요소를 선택, 매 시간단계에서 요소경계에 불연속을 허락함으로서 해의 정확성을 높이고 무조건의 안정을 주는 상미분방정식의 해법인 것이다.

  • PDF

계층적 반복의 예조건화에 의한 비압축성 유동 계산 (An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning)

  • 김진환;정창률
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2003
  • In two-dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure (HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint hence, achieving an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared (CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper and efficient iterative procedure for higher order finite element formulation has not been available, thus far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient, and useful in flow analyses, in conjunction with hierarchical elements.

사각평판에서 구멍의 위치에 따른 자유진동에 관한 연구 (A Study on the Free Vibration of a Square Plate with Various Hole Positions)

  • 김형준;최경호;박정호;김현수;안찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.753-756
    • /
    • 2002
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis far each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary for the basic design information.

  • PDF

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산 (An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

사각평판에서 홀의 위치에 따른 자유진동에 관한 연구 (A Study on the Free Vibration of a Square Plate with Various Hole Position)

  • 김현수;안찬우;최경호;김동영;김형준
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.132-139
    • /
    • 2003
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis for each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends clamped support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary fur the basic design information.

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.