• 제목/요약/키워드: stable cells

검색결과 967건 처리시간 0.036초

인진(茵蔯)이 간성상세포의 섬유화 억제에 미치는 영향 (Inhibitory Effect of Artemisiae Capillaris Herba on Fibrogenesis in Rat Hepatic Stellate Cells)

  • 김성아;우홍정;김영철;이장훈
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.177-188
    • /
    • 2008
  • Objectives : This study was performed to investigate the anti-fibrogenic effect of Artemisiae Capillaris Herba on cultured rat hepatic stellate cells. Materials and Methods : Hepatic stellate cells(HSC-T6) were treated with various concentrations of Artemisiae Capillaris Herba extract for 24 hours. The extraction was done either with distilled water or 50% EtOH. After the treatment, cell viability, proliferation, procollagen levels and the mRNA of the collagen type 1a2 and ASMA were measured by using MTT assay, BrdU assay, RT-PCR, and Procollagen Type I C-peptide EIA Kit. Results : The viability and proliferation of the hepatic stellate cells were decreased as the concentration increased. The mRNA expression decreased consistently with the volume of the secreted procollagen with the extraction made with distilled water, which indicates the herb has inhibitory effect on fibrogenesis of the liver by regulating one of the fibrosis associated genes in transcription. However, it increased in 50% EtOH extraction, which shows that a more stable reaction is expected of the extraction made with distilled water than the extraction made with 50% EtOH. The production of procollagen was decreased by a low-concentration treatment with Artemisiae Capillaris Herba, but increased by a high concentration. It seemed that the cells were responding to Artemisiae Capillaris Herba in low- concentrations, thus producing small amounts of collagen. When the drug was administered at high enough concentration to give direct toxicity to cells, the ability of cells to produce collagen was activated, and the overproduction of collagen was observed as an undesirable results. Conclusion : These results suggest that Artemisiae Capillaris Herba is beneficial in the treatment of cirrhotic patients as well as for the patients with chronic hepatitis when extracted with water in the proper concentrations.

  • PDF

세포군집의 확장에 관여하는 물리적 힘의 가시화 (Visualization of mechanical stresses in expanding cell cluster)

  • 조영빈;권보미;고웅현;신현정
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

Effect of Copper on the Growth and Methanol Dehydrogenase Activity of Methylobacillus sp. Strain SK1 DSM 8269

  • Kim, Si W.;Kim, Young M.
    • Journal of Microbiology
    • /
    • 제34권2호
    • /
    • pp.172-178
    • /
    • 1996
  • Methylobacillus sp. strain SK1, which grows only on methanol, was found to grow in the absence of added copper. The doubling time (t$_{d}$ = 1.3 h) of the bacterium growing at the exponential growth phase at 30.deg.C in the absence of copper was the same as that of the cell growing in the presence of copper. The bacterium growing after the exponential phase in the absence of copper, however, grew faster than the cell growing in the presence of copper. Cells harvested after thee arly stationary phase in the presence of copper were found to exhibit no methanol dehydrogenase (MDH) activity, but the amount and subunit structure of the enzyme in the cells were almost the same as that in cells harboring active MDH. Pellets of the cells harvested after the early stationary phase in the presence of copper were pale green. Cell-free extracts prepared from cells harvested at the early stationary phase in the presence of copper were pink and exhibited MDH activity, but it turned dark-green rapidly from the surface under air. The green-colored portions of the extracts showed no MDH activity and contained c-type cytochromes that were oxidized completely. The inactive MDH activity and contained c-type cytochromes that were oxidized completely. The inactive MDH proteins in the green portions were found to have antigenic sites identical to those of the active one as the inactive MDHs in cells grown in the presence of copper. The bacterium was found to accumulate copper actively during the exponential growth phase. MDH prepared from cells grown in the presence or absence of copper was found to be more stable under nitrogen gas than under air. Methanol at 10 mM was found to enhance the stability of the MDH under air.r.

  • PDF

Characteristics of B Cell Mitogen Isolated from Korean-Style Fermented Soybean Paste

  • Lee, Bong-Ki;Kwak, Yi-Sub;Jang, Yun-Soo;Kim, Joo-Deuk;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.143-152
    • /
    • 2001
  • Korean-style fermented soybean paste (KFSP), Doenjang, is a traditional food that is consumed as a protein source in Korea. Recently, efforts to identify biolgocial response modifiers (BRMs) have been focused on food products. Accordingly, this study which isolated abiologically active substance form KFSP, named KFSP-BRM, ws defined to be aheat-stable carbohydrate with a molecular weight of 2,000 kDa. The biological activity of KFSP-BRM was not inactivated by treatment with an anti-LPS antibody. The oral as well as intraperitoneal treatment of mice with KFSP-BRM significantly enhanced the number of B cells expressing surface significantly enhanced the number of B cells expressing surface immunoglobulins (IgM and IgG). Subsequently, an increased level of immunoglobulins in the sera was also observed. In vitro. KFSP-BRM was found to upregulate the production of interleukin-1 (IL-1) and IL-6 by mactro phages and B cells but not the production of IL-2 by T cells. In conclusion, these data demonstrate the presence of a BRM in KFSP, which may provide an additional benefit to those consuming it is a food. KFSP-BRM is a novel B cellmitogen distinct from fresh soybean lectin or B cell mitogens, such as LPS and Streptococcus protein A. The major biological effects of KFSP-BRM would appear to be anincreased production of IL-1 and IL-6 by macrophages and B cells, thereby enhancing the function of mature B cells.

  • PDF

Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

  • Hu, Lifang;Su, Peihong;Li, Runzhi;Yan, Kun;Chen, Zhihao;Shang, Peng;Qian, Airong
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.583-588
    • /
    • 2015
  • Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by $CD8^+$ T Cells

  • Lim, Hoyong;Do, Seon Ah;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • 제13권2호
    • /
    • pp.63-69
    • /
    • 2013
  • IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membranebound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-${\alpha}$. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the $CD8^+$ T cell-depleted mice than in $CD4^+$ T cell-depleted or normal mice. These results suggest that $CD8^+$ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and $CD4^+$ helper T cells.

자가기질혈관분획을 이용한 수지골 결손 환자의 치료 (Treatment of Phalangeal Bone Defect Using Autologous Stromal Vascular Fraction from Lipoaspirated Tissue)

  • 정태원;지이화;김덕우;동은상;윤을식
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.438-444
    • /
    • 2011
  • Purpose: Adipose-derived stromal cells (ASCs) are readily harvested from lipoaspirated tissue or subcutaneous adipose tissue fragments. The stromal vascular fraction (SVF) is a heterogeneous set of cell populations that surround and support adipose tissue, which includes the stromal cells, ASCs, that have the ability to differentiate into cells of several lineages and contains cells from the microvasculature. The mechanisms that drive the ASCs into the osteoblast lineage are still not clear, but the process has been more extensively studied in bone marrow stromal cells. The purpose of this study was to investigate the osteogenic capacity of adipose derived SVF cells and evaluate bone formation following implantation of SVF cells into the bone defect of human phalanx. Methods: Case 1 a 43-year-old male was wounded while using a press machine. After first operation, segmental bone defects of the left 3rd and 4th middle phalanx occurred. At first we injected the SVF cells combined with demineralized bone matrix (DBM) to defected 4th middle phalangeal bone lesion. We used P (L/DL)LA [Poly (70L-lactide-co-30DL-lactide) Co Polymer P (L/DL)LA] as a scaffold. Next, we implanted the SVF cells combined with DBM to repair left 3rd middle phalangeal bone defect in sequence. Case 2 was a 25-year-old man with crushing hand injury. Three months after the previous surgery, we implanted the SVF cells combined with DBM to restore right 3rd middle phalangeal bone defect by syringe injection. Radiographic images were taken at follow-up hospital visits and evaluated radiographically by means of computerized analysis of digital images. Results: The phalangeal bone defect was treated with autologous SVF cells isolated and applied in a single operative procedure in combination with DBM. The SVF cells were supported in place with mechanical fixation with a resorbable macroporous sheets acting as a soft tissue barrier. The radiographic appearance of the defect revealed a restoration to average bone density and stable position of pharyngeal bone. Densitometric evaluations for digital X-ray revealed improved bone densities in two cases with pharyngeal bone defects, that is, 65.2% for 4th finger of the case 1, 60.5% for 3rd finger of the case 1 and 60.1% for the case 2. Conclusion: This study demonstrated that adipose derived stromal vascular fraction cells have osteogenic potential in two clinical case studies. Thus, these reports show that cells from the SVF cells have potential in many areas of clinical cell therapy and regenerative medicine, albeit a lot of work is yet to be done.

Synthesis and Electrochemical Characterization of Polypyrrole/Multi-walled Carbon Nanotube Composite Electrodes for Supercapacitor Applications

  • Paul, Santhosh;Lee, Yoon-Sung;Choi, Ji-Ae;Kang, Yun-Chan;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1228-1232
    • /
    • 2010
  • The nanocomposites of polypyrrole (PPy) and multi-walled carbon nanotube (MWCNT) with different composition are synthesized by the chemical oxidative polymerization method. In these composites, the MWCNTs are uniformly coated by PPy with different thickness. The electrochemical properties of the composite electrodes are investigated by cyclic voltammetry, galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The full cells assembled with the PPy/MWCNT composite electrodes deliver initial specific capacitances ranging from 146.3 to 167.2 F/g at 0.5 mA/$cm^2$ and exhibit stable cycling characteristics. The effect of content of MWCNT in the composite on cycling performance of the cells is also investigated.

GLOBAL STABILITY OF THE VIRAL DYNAMICS WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE

  • Zhou, Xueyong;Cui, Jingan
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.555-574
    • /
    • 2011
  • It is well known that the mathematical models provide very important information for the research of human immunodeciency virus type. However, the infection rate of almost all mathematical models is linear. The linearity shows the simple interaction between the T-cells and the viral particles. In this paper, a differential equation model of HIV infection of $CD4^+$ T-cells with Crowley-Martin function response is studied. We prove that if the basic reproduction number $R_0$ < 1, the HIV infection is cleared from the T-cell population and the disease dies out; if $R_0$ > 1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if $R_0$ > 1. Numerical simulations are presented to illustrate the results.

Molecular Cloning of a CMCase Gene from Alkalophilic sp. and Its Expression in Escherichia coli

  • Yu, Ju-Hyun;Kong, In-Soo;Kim, Jin-Man;Park, Yoon-Suk
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.529.1-529
    • /
    • 1986
  • For isolation of the CMCase gene of the alkalophilic Bacillus sp. strain N-4 to analyze their genetic information for the multicomponents of the cellulase, Bscherichia coli K12 and plasmid DNA pBR322 was used as host-vector system. After the digestion of purified chromosomal DNA and plasmid DNA pBR322 with HindIII, these were ligated. The ligated DND were transformed into Escherichia coli, and recombinant plasmid 107 carried the gene coding for CMCase was constructed. The CMCase produced by Escherichia coli cells containing plasmid DNA pYBC107 was found in the cells as intracellular enzyme and nearly 60% of the total CMCase activity was localized in cellular fraction. Also, the optimum pH for the reaction of CMCase produced by Escherichia coli was appeared at pH .8.0 and the enzyme was stable between pH 7.0 and pH 8.0.

  • PDF