DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characterization of Polypyrrole/Multi-walled Carbon Nanotube Composite Electrodes for Supercapacitor Applications

  • Paul, Santhosh (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Yoon-Sung (Department of Chemical Engineering, Hanyang University) ;
  • Choi, Ji-Ae (Department of Chemical Engineering, Hanyang University) ;
  • Kang, Yun-Chan (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2010.01.29
  • Accepted : 2010.03.04
  • Published : 2010.05.20

Abstract

The nanocomposites of polypyrrole (PPy) and multi-walled carbon nanotube (MWCNT) with different composition are synthesized by the chemical oxidative polymerization method. In these composites, the MWCNTs are uniformly coated by PPy with different thickness. The electrochemical properties of the composite electrodes are investigated by cyclic voltammetry, galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The full cells assembled with the PPy/MWCNT composite electrodes deliver initial specific capacitances ranging from 146.3 to 167.2 F/g at 0.5 mA/$cm^2$ and exhibit stable cycling characteristics. The effect of content of MWCNT in the composite on cycling performance of the cells is also investigated.

Keywords

References

  1. Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539. https://doi.org/10.1149/1.2085829
  2. Frackowiak, E.; Beguin, F. Carbon 2002, 40, 1775. https://doi.org/10.1016/S0008-6223(02)00045-3
  3. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366. https://doi.org/10.1038/nmat1368
  4. Kim, T.; Ham, C.; Rhee, C. K.; Yoon, S. H.; Tsuji, M.; Mochida, I. Carbon 2009, 47, 226. https://doi.org/10.1016/j.carbon.2008.10.010
  5. Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. https://doi.org/10.1149/1.1837291
  6. Park, G. J.; Kalpana, D.; Kumar, A.; Nakamura, H.; Lee, Y. S.; Yoshio, M. Bull. Korean Chem. Soc. 2009, 30, 817. https://doi.org/10.5012/bkcs.2009.30.4.817
  7. Jurewicz, K.; Delpeux, S.; Bertagna, V.; Beguin, F.; Frackowiak, E. Chem. Phys. Lett. 2001, 347, 36. https://doi.org/10.1016/S0009-2614(01)01037-5
  8. Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. J. Power Sources 2002, 103, 20.
  9. Ryu, K. S.; Kim, K. M.; Park, N. G.; Park, Y. J.; Chang, S. H. J. Power Sources 2002, 103, 305. https://doi.org/10.1016/S0378-7753(01)00862-X
  10. Ryu, K. S.; Lee, Y. G.; Hong, Y. S.; Park, Y. J.; Wu, X.; Kim, K. M.; Kang, M. G.; Park, N. G.; Chang, S. H. Electrochim. Acta 2004, 50, 843. https://doi.org/10.1016/j.electacta.2004.02.055
  11. Kim, J. H.; Lee, Y. S.; Sharma, A. K.; Liu, C. G. Electrochim. Acta 2006, 52, 1727. https://doi.org/10.1016/j.electacta.2006.02.059
  12. Fan, L. Z.; Maier, J. Electrochem. Commun. 2006, 8, 937. https://doi.org/10.1016/j.elecom.2006.03.035
  13. Kim, B. C.; Ko, J. M.; Wallace, G. G. J. Power Sources 2008, 177, 665. https://doi.org/10.1016/j.jpowsour.2007.11.078
  14. Kim, B. C.; Kwon, J. S.; Ko, J. M.; Park, J. H.; Too, C. O.; Wallace, G. G. Synth. Met. 2010, 160, 94. https://doi.org/10.1016/j.synthmet.2009.10.011
  15. An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, A1058. https://doi.org/10.1149/1.1491235
  16. Xiao, Q.; Zhou, X. Electrochim. Acta 2003, 48, 575. https://doi.org/10.1016/S0013-4686(02)00727-2
  17. Khomenko, V.; Frackowiak, E.; Beguin, F. Electrochim. Acta 2005, 50, 2499. https://doi.org/10.1016/j.electacta.2004.10.078
  18. Sivakkumar, S. R.; Kim, W. J.; Choi, J. A.; MacFarlane, D. R.; Forsyth, M.; Kim, D. W. J. Power Sources 2007, 171, 1062. https://doi.org/10.1016/j.jpowsour.2007.05.103
  19. Sivakkumar, S. R.; Ko, J. M.; Kim, D. Y.; Kim, B. C.; Wallace, G. G. Electrochim. Acta 2007, 52, 7377. https://doi.org/10.1016/j.electacta.2007.06.023
  20. Oh, J.; Kozlov, M. E.; Kim, B. G.; Kim, H. K.; Baughman, R. H.; Hwang, Y. H. Synth. Met. 2008, 158, 638. https://doi.org/10.1016/j.synthmet.2008.04.007
  21. Lin, X.; Xu, Y. Electrochim. Acta 2008, 53, 4990. https://doi.org/10.1016/j.electacta.2008.02.020
  22. Kim, J. Y.; Kim, K. H.; Kim, K. B. J. Power Sources 2008, 176, 396. https://doi.org/10.1016/j.jpowsour.2007.09.117
  23. Xiao, Q.; Zhou, X. Electrochim. Acta 2003, 48, 575. https://doi.org/10.1016/S0013-4686(02)00727-2
  24. Mi, H.; Zhang, X.; Ye, X.; Yang, S. J. Power Sources 2008, 176, 403. https://doi.org/10.1016/j.jpowsour.2007.10.070

Cited by

  1. Preparation of Graphene/Polypyrrole Composite Film via Electrodeposition for Supercapacitors vol.11, pp.6, 2012, https://doi.org/10.1109/TNANO.2012.2200259
  2. Development of a Novel Active Polypyrrole Trilayer Membrane vol.1, pp.2, 2013, https://doi.org/10.1021/sc300078v
  3. Fabrication of transition-metal-doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications vol.130, pp.1, 2013, https://doi.org/10.1002/app.39176
  4. Influence of Single-wall Carbon Nanotubes and Polypyrrole Thin Layer Coating on the Electrical Conductivity of PolyHIPE Foams vol.53, pp.4, 2014, https://doi.org/10.1080/03602559.2013.844247
  5. Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors vol.18, pp.12, 2016, https://doi.org/10.1039/C6CP00150E
  6. Carbon nanotube-based nanocomposites and their applications vol.31, pp.18, 2017, https://doi.org/10.1080/01694243.2017.1295625
  7. @polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors vol.7, pp.58, 2017, https://doi.org/10.1039/C7RA06093A
  8. Polypyrrole composites with carbon materials for supercapacitors vol.71, pp.2, 2017, https://doi.org/10.1007/s11696-016-0048-9
  9. -Pd Nanoparticles vol.2, pp.10, 2013, https://doi.org/10.1149/2.022310jss
  10. Carbon Nanotube-Based Chemiresistive Sensors vol.17, pp.4, 2017, https://doi.org/10.3390/s17040882
  11. Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes vol.20, pp.10, 2010, https://doi.org/10.1007/s11581-014-1231-z
  12. Urease immobilized polypyrrole/multi-walled carbon nanotubes composite biosensor for heavy metal ions detection vol.2, pp.4, 2010, https://doi.org/10.1080/22243682.2014.935953
  13. Pseudocapacity of N-doped and polymer modified carbon nanomaterials in non-aqueous media vol.29, pp.suppl4, 2014, https://doi.org/10.1179/1753555714y.0000000187
  14. One‐step electrochemical preparation of ternary phthalocyanine/acid‐activated multiwalled carbon nanotube/polypyrrole‐based electrodes and their supercapacitor applications vol.44, pp.11, 2010, https://doi.org/10.1002/er.5634
  15. Multifunctional Polypyrrole/Multi-Walled Carbon Nanotube Composite Material: Dielectric, Humidity Sensing and Broadband EMI Shielding Properties vol.63, pp.3, 2010, https://doi.org/10.1134/s156009042103009x