References
- Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539. https://doi.org/10.1149/1.2085829
- Frackowiak, E.; Beguin, F. Carbon 2002, 40, 1775. https://doi.org/10.1016/S0008-6223(02)00045-3
- Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366. https://doi.org/10.1038/nmat1368
- Kim, T.; Ham, C.; Rhee, C. K.; Yoon, S. H.; Tsuji, M.; Mochida, I. Carbon 2009, 47, 226. https://doi.org/10.1016/j.carbon.2008.10.010
- Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. https://doi.org/10.1149/1.1837291
- Park, G. J.; Kalpana, D.; Kumar, A.; Nakamura, H.; Lee, Y. S.; Yoshio, M. Bull. Korean Chem. Soc. 2009, 30, 817. https://doi.org/10.5012/bkcs.2009.30.4.817
- Jurewicz, K.; Delpeux, S.; Bertagna, V.; Beguin, F.; Frackowiak, E. Chem. Phys. Lett. 2001, 347, 36. https://doi.org/10.1016/S0009-2614(01)01037-5
- Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. J. Power Sources 2002, 103, 20.
- Ryu, K. S.; Kim, K. M.; Park, N. G.; Park, Y. J.; Chang, S. H. J. Power Sources 2002, 103, 305. https://doi.org/10.1016/S0378-7753(01)00862-X
- Ryu, K. S.; Lee, Y. G.; Hong, Y. S.; Park, Y. J.; Wu, X.; Kim, K. M.; Kang, M. G.; Park, N. G.; Chang, S. H. Electrochim. Acta 2004, 50, 843. https://doi.org/10.1016/j.electacta.2004.02.055
- Kim, J. H.; Lee, Y. S.; Sharma, A. K.; Liu, C. G. Electrochim. Acta 2006, 52, 1727. https://doi.org/10.1016/j.electacta.2006.02.059
- Fan, L. Z.; Maier, J. Electrochem. Commun. 2006, 8, 937. https://doi.org/10.1016/j.elecom.2006.03.035
- Kim, B. C.; Ko, J. M.; Wallace, G. G. J. Power Sources 2008, 177, 665. https://doi.org/10.1016/j.jpowsour.2007.11.078
- Kim, B. C.; Kwon, J. S.; Ko, J. M.; Park, J. H.; Too, C. O.; Wallace, G. G. Synth. Met. 2010, 160, 94. https://doi.org/10.1016/j.synthmet.2009.10.011
- An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, A1058. https://doi.org/10.1149/1.1491235
- Xiao, Q.; Zhou, X. Electrochim. Acta 2003, 48, 575. https://doi.org/10.1016/S0013-4686(02)00727-2
- Khomenko, V.; Frackowiak, E.; Beguin, F. Electrochim. Acta 2005, 50, 2499. https://doi.org/10.1016/j.electacta.2004.10.078
- Sivakkumar, S. R.; Kim, W. J.; Choi, J. A.; MacFarlane, D. R.; Forsyth, M.; Kim, D. W. J. Power Sources 2007, 171, 1062. https://doi.org/10.1016/j.jpowsour.2007.05.103
- Sivakkumar, S. R.; Ko, J. M.; Kim, D. Y.; Kim, B. C.; Wallace, G. G. Electrochim. Acta 2007, 52, 7377. https://doi.org/10.1016/j.electacta.2007.06.023
- Oh, J.; Kozlov, M. E.; Kim, B. G.; Kim, H. K.; Baughman, R. H.; Hwang, Y. H. Synth. Met. 2008, 158, 638. https://doi.org/10.1016/j.synthmet.2008.04.007
- Lin, X.; Xu, Y. Electrochim. Acta 2008, 53, 4990. https://doi.org/10.1016/j.electacta.2008.02.020
- Kim, J. Y.; Kim, K. H.; Kim, K. B. J. Power Sources 2008, 176, 396. https://doi.org/10.1016/j.jpowsour.2007.09.117
- Xiao, Q.; Zhou, X. Electrochim. Acta 2003, 48, 575. https://doi.org/10.1016/S0013-4686(02)00727-2
- Mi, H.; Zhang, X.; Ye, X.; Yang, S. J. Power Sources 2008, 176, 403. https://doi.org/10.1016/j.jpowsour.2007.10.070
Cited by
- Preparation of Graphene/Polypyrrole Composite Film via Electrodeposition for Supercapacitors vol.11, pp.6, 2012, https://doi.org/10.1109/TNANO.2012.2200259
- Development of a Novel Active Polypyrrole Trilayer Membrane vol.1, pp.2, 2013, https://doi.org/10.1021/sc300078v
- Fabrication of transition-metal-doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications vol.130, pp.1, 2013, https://doi.org/10.1002/app.39176
- Influence of Single-wall Carbon Nanotubes and Polypyrrole Thin Layer Coating on the Electrical Conductivity of PolyHIPE Foams vol.53, pp.4, 2014, https://doi.org/10.1080/03602559.2013.844247
- Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors vol.18, pp.12, 2016, https://doi.org/10.1039/C6CP00150E
- Carbon nanotube-based nanocomposites and their applications vol.31, pp.18, 2017, https://doi.org/10.1080/01694243.2017.1295625
- @polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors vol.7, pp.58, 2017, https://doi.org/10.1039/C7RA06093A
- Polypyrrole composites with carbon materials for supercapacitors vol.71, pp.2, 2017, https://doi.org/10.1007/s11696-016-0048-9
- -Pd Nanoparticles vol.2, pp.10, 2013, https://doi.org/10.1149/2.022310jss
- Carbon Nanotube-Based Chemiresistive Sensors vol.17, pp.4, 2017, https://doi.org/10.3390/s17040882
- Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes vol.20, pp.10, 2010, https://doi.org/10.1007/s11581-014-1231-z
- Urease immobilized polypyrrole/multi-walled carbon nanotubes composite biosensor for heavy metal ions detection vol.2, pp.4, 2010, https://doi.org/10.1080/22243682.2014.935953
- Pseudocapacity of N-doped and polymer modified carbon nanomaterials in non-aqueous media vol.29, pp.suppl4, 2014, https://doi.org/10.1179/1753555714y.0000000187
- One‐step electrochemical preparation of ternary phthalocyanine/acid‐activated multiwalled carbon nanotube/polypyrrole‐based electrodes and their supercapacitor applications vol.44, pp.11, 2010, https://doi.org/10.1002/er.5634
- Multifunctional Polypyrrole/Multi-Walled Carbon Nanotube Composite Material: Dielectric, Humidity Sensing and Broadband EMI Shielding Properties vol.63, pp.3, 2010, https://doi.org/10.1134/s156009042103009x