• Title/Summary/Keyword: stable cell line

Search Result 129, Processing Time 0.03 seconds

Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

  • Hu, Lifang;Su, Peihong;Li, Runzhi;Yan, Kun;Chen, Zhihao;Shang, Peng;Qian, Airong
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.583-588
    • /
    • 2015
  • Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

Effects of the Developmental Stage of Extract Donor Embryos on the Culture of Marine Medaka Oryzias dancena Embryonic Stem Cell-like Cells (배아추출물 공여 배아의 발생단계가 바다송사리(Oryzias dancena) 배아 줄기세포 유사세포의 배양에 미치는 영향)

  • Ryu, Jun Hyung;Gong, Seung Pyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.160-168
    • /
    • 2017
  • Optimizing the conditions for stem cell culture is an essential prerequisite for the efficient utilization of stem cells. In the culture of fish embryonic stem cells (ESCs) or ESC-like cells, embryo extracts are important for stable growth, but there is no rule for determining the developmental stage of the embryos used to obtain extracts. Therefore, this study investigated the effects of the developmental stage of extract donor embryos on the culture of Oryzias dancena ESC-like cells. O. dancena ESC-like cells were cultured in different media containing each of four types of embryo extract depending on the developmental stage of the extract donor embryos. Growth, morphology, colony-forming ability, alkaline phosphatase (AP) activity, and embryoid body (EB) formation of the cells were investigated. While the developmental stage of the extract donor embryos did not influence the growth, morphology, AP activity, or EB formation of ESC-like cells, colony-forming ability was affected and the pattern of the effects differed completely between the two ESC-like cells investigated. These results suggest that the developmental stage of extract donor embryos should be selected carefully for the culture of ESC-like cells, according to the research purpose and type of cell line.

The Current Situation for Recycling of Lithium Ion Batteries

  • Hiroshi Okamoto;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.252-256
    • /
    • 2001
  • The rapid development of communication equipment and information processing technology has led to a constant improvement in cordless communication. Lithium ion batteries used in cellular phones and laptop computers, in particular, have been in the forefront of the above revolution. These batteries use high value added raw materials and have a high and stable energy output and are increasingly coming into common use. The development of the material for the negative terminal has led to an improvement in the quality and efficiency of the batteries, whereas a reduction in the cost of the battery by researching new materials for the positive anode has become a research theme by itself. These long life batteries, it is being increasingly realized, can have value added to them by recycling. Research is increasingly being done on recycling the aluminum case and the load casing for the negative diode. This paper aims to introduce the current situation of recycling of lithium ion batteries. 1. Introduction 2. Various types of batteries and the situation of their recycling and the facts regarding recycling. 3. Example of cobalt recycling from waste Lithium ion secondary cell. 3-1) Flow Chart of Lithium ion battery recycling 3-2) Materials that make a lithium ion secondary cell. 3-3) Coarse grinding of Lithium ion secondary cell, and stabilization of current discharge 3-4) Burning 3-5) Grinding 3-6) Magnetic Separation 3-7) Dry sieving 3-8) Dry Classifying 3-9) Content Ratio of recycled cobalt parts 3-10) Summary of the Line used for the recovery of Cobalt from waste Lithium ion battery. 4. Conclusion.

  • PDF

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa;Ju, Uk-Il;Song, Jung-Yup;Chun, Yang-Sook
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.734-741
    • /
    • 2014
  • Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

Effects of Tissue Factor, PAR-2 and MMP-9 Expression on Human Breast Cancer Cell Line MCF-7 Invasion

  • Lin, Zeng-Mao;Zhao, Jian-Xin;Duan, Xue-Ning;Zhang, Lan-Bo;Ye, Jing-Ming;Xu, Ling;Liu, Yin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.643-646
    • /
    • 2014
  • Objective: This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Methods: Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. Results: TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR-2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. Conclusion: TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.

GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis

  • Lin, Heng;Hu Peng;Zhang, Hongyu;Deng, Yong;Yang, Zhiqing;Zhang, Leida
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.329-342
    • /
    • 2022
  • The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.

Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAILInduced Apoptosis

  • Zhang, Ya-Ping;Kong, Qing-Hong;Huang, Ying;Wang, Guan-Lin;Chang, Kwen-Jen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2251-2256
    • /
    • 2015
  • To study effects of cellular FLICE (FADD-like IL-$1{\beta}$-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAILinduced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.

Gemcitabine Plus Paclitaxel as Second-line Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer

  • Baykara, Meltem;Coskun, Ugur;Berk, Veli;Ozkan, Metin;Kaplan, Muhammet Ali;Benekli, Mustafa;Karaca, Halit;Inanc, Mevlude;Isikdogan, Abdurrahman;Sevinc, Alper;Elkiran, Emin Tamer;Demirci, Umut;Buyukberber, Suleyman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5119-5124
    • /
    • 2012
  • Purpose: The aim of this retrospective study was to determine response rates, progression-free survival (PFS), overall survival (OS) and toxicity of gemcitabine and paclitaxel combinations with advanced or metastatic non-small cell lung cancer patients (NSCLC) who have progressive disease after platinum-based first-line chemotherapy. Methods: We retrospectively evaluated the file records of patients treated with gemcitabine plus paclitaxel in advanced or metastatic NSCLC cases in a second-line setting. The chemotherapy schedule was as follows: gemcitabine $1500mg/m^2$ and paclitaxel 150 mg/m2 administered every two weeks. Results: Forty-eight patients (45 male, 3 female) were evaluated; stage IIIB/IV 6/42; PS0, 8.3%, PS1, 72.9%, PS2, 18.8%; median age, 56 years old (range 38-76). Six (12.5%) patients showed a partial response (PR), 13 (27.1%) stable disease (SD), and 27 (56.3%) progressive disease (PD). The median OS was 6.63 months (95% CI 4.0-9.2); the median PFS was 2.7 months (95% CI 1.8-3.6). Grade 3 and 4 hematologic toxicities, including neutropenia (n=4, 8.4%), and anemia (n=3, 6.3%) were encountered, but no grade 3 or 4 thrombocytopenia. One patient developed febrile neutropenia. There were no interruption for reasons of toxicity and no exitus related to therapy. Conclusion: The combination of two-weekly gemcitabine plus paclitaxel was an effective and well-tolerated second-line chemotherapy regimen for advanced or metastatic NSCLC patients previously treated with platinum-containing chemotherapy. Although the most common and dose limiting toxicities were neutropenia and neuropathy, this regimen was tolerated well by the patients.

Luteolin Sensitizes Two Oxaliplatin-Resistant Colorectal Cancer Cell Lines to Chemotherapeutic Drugs Via Inhibition of the Nrf2 Pathway

  • Chian, Song;Li, Yin-Yan;Wang, Xiu-Jun;Tang, Xiu-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2911-2916
    • /
    • 2014
  • Oxaliplatin is a first-line therapy for colorectal cancer, but cancer cell resistance to the drug compromises its efficacy. To explore mechanisms of drug resistance, we treated colorectal cancer cells (HCT116 and SW620) long-term with oxaliplatin and established stable oxaliplatin-resistant lines (HCT116-OX and SW620-OX). Compared with parental cell lines, $IC_{50}$s for various chemotherapeutic agents (oxaliplatin, cisplatin and doxorubicin) were increased in oxaliplatin-resistant cell lines and this was accompanied by activation of nuclear factor erythroid-2 p45-related factor 2 (Nrf2) and NADPH quinone oxidoreductase 1 (NQO1). Furthermore, luteolin inhibited the Nrf2 pathway in oxaliplatin-resistant cell lines in a dose-dependent manner. Luteolin also inhibited Nrf2 target gene [NQO1, heme oxygenase-1 (HO-1) and $GST{\alpha}1/2$] expression and decreased reduced glutathione in wild type mouse small intestinal cells. There was no apparent effect in Nrf2-/- mice. Luteolin combined with other chemotherapeutics had greater anti-cancer activity in resistant cell lines (combined index values below 1), indicating a synergistic effect. Therefore, adaptive activation of Nrf2 may contribute to the development of acquired drug-resistance and luteolin could restore sensitivity of oxaliplatin-resistant cell lines to chemotherapeutic drugs. Inhibition of the Nrf2 pathway may be the mechanism for this restored therapeutic response.

Rh-Ni and Rh-Co Catalysts for Autothermal Reforming of Gasoline

  • Jung, Yeon-Gyu;Lee, Dae Hyung;Kim, Yongmin;Lee, Jin Hee;Nam, Suk-Woo;Choi, Dae-Ki;Yoon, Chang Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.231-235
    • /
    • 2014
  • Rh doped Ni and Co catalysts, Rh-M/$CeO_2$(20 wt %)-$Al_2O_3$ (0.2 wt % of Rh; M = Ni or Co, 20 wt %) were synthesized to produce hydrogen via autothermal reforming (ATR) of commercial gasoline at $700^{\circ}C$ under the conditions of a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of $20,000h^{-1}$. The Rh-Ni/$CeO_2$(20 wt %)-$Al_2O_3$ catalyst (1) exhibited excellent activities, with $H_2$ and ($H_2$+CO) yields of 2.04 and 2.58 mol/mol C, respectively. In addition, this catalyst proved to be highly stable over 100 h without catalyst deactivation, as evidenced by energy dispersive spectroscopy (EDX) and elemental analyses. Compared to 1, Rh-Co/$CeO_2$(20 wt %)-$Al_2O_3$ catalyst (2) exhibited relatively low stability, and its activity decreased after 57 h. In line with this observation, elemental analyses confirmed that nearly no carbon species were formed at 1 while carbon deposits (10 wt %) were found at 2 following the reaction, which suggests that carbon coking is the main process for catalyst deactivation.