• 제목/요약/키워드: stability and robustness

검색결과 563건 처리시간 0.027초

RBFN을 이용한 로봇 매니퓰레이터의 적응제어 방법 (An Adaptive Control Method of Robot Manipulators using RBFN)

  • 이민중;최영규;박진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.420-420
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators The structure of the proposed controller consists of a RBFN and VSC-1 ike control. RBFN is used in order to approximate かon system, and VSC-like control to guarantee robustness On the basis of the Lyapunov stability theorem, we guarantee the stability for the total system. And the learning law of RBFN is established by the Lyapunov method, Finally, we apply the proposed controller to tracking control for a 2 link SCARA type robot manipulator.

  • PDF

무한차원 시스템을 위한 선형 이차상태 궤한 제어기의 견인성에 관한 연구 (On Robustness of Linear Quadratic State Feedback Regulators for Infinite Dimensional systems)

  • Seo, Jin-Heon
    • 대한전기학회논문지
    • /
    • 제37권7호
    • /
    • pp.490-497
    • /
    • 1988
  • This paper is concerned with the robust stability of linear quadratic state feedback regulators for infinite dimensional systems in the presence of system uncertainties Several robustness results ensuring the asymptoitc stability and exponential stability of the perturbed closed loop system are derived for a class of nonlinear perturbations of the system and input operators satisfying the matching condition. For the case where the input space is finite dimensional, some robust properties of the state feedback regulator designed on the basis of the linear quadratic regulator for finite dimensional unstable modes are also discussed seperately.

  • PDF

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

구조화된 불확실성의 비선형요소를 갖는 선형 시스템의 강인영역 개선 (Improvement of the Robustness Bounds of the Linear Systems with Structured Uncertainties)

  • 조장현
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this paper is the derivation and development of the new definitions and methods for the new estimation of robustness for the systems having structured uncertainties. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. The systems considered are assumed to be nominally linear, with time-variant, nonlinear bounded perturbations. This new techniques demonstrate the improvement of robustness bounds from the numerical results.

  • PDF

Study of the Robustness Bounds with Lyapunoved-Based Stability Concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.700-705
    • /
    • 2005
  • The purpose of this project is the derivation and development of techniques for the new estimation of robustness for the systems having uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. Bounded means the uncertainties are with same positive/negative range. The number of uncertainties will be the degree of freedoms in the calculation of the stability region. This is so called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, the selection of Lyapunov candidate function is of various forms. In this paper, the quadratic form is selected. this generated techniques has been demonstrated by recent research interest in the area of robust control design and confirms that estimation of robustness bounds will be improved upon those obtained by results of the original Lyapunov method. In this paper, the symbolic algebraic procedures are utilized and the calculating errors are reduced in the numerical procedures. The application of numerical procedures can prove the improvements in estimations of robustness for one-and more structured perturbations. The applicable systems is assumed to be linear with time-varying with nonlinear bounded perturbations. This new techniques will be extended to other nonlinear systems with various forms of uncertainties, especially in the nonlinear case of the unstructured perturbations and also with various control method.

  • PDF

Robustness analysis of vibration control in structures with uncertain parameters using interval method

  • Chen, Su Huan;Song, Min;Chen, Yu Dong
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.185-204
    • /
    • 2005
  • Variations in system parameters due to uncertainties may result in system performance deterioration. Uncertainties in modeling of structures are often considered to ensure that control system is robust with respect to response errors. Hence, the uncertain concept plays an important role in vibration control of the engineering structures. The paper discusses the robustness of the stability of vibration control systems with uncertain parameters. The vibration control problem of an uncertain system is approximated by a deterministic one. The uncertain parameters are described by interval variables. The uncertain state matrix is constructed directly using system physical parameters and avoided to use bounds in Euclidean norm. The feedback gain matrix is determined based on the deterministic systems, and then it is applied to the actual uncertain systems. A method to calculate the upper and lower bounds of eigenvalues of the close-loop system with uncertain parameters is presented. The lower bounds of eigenvalues can be used to estimate the robustness of the stability the controlled system with uncertain parameters. Two numerical examples are given to illustrate the applications of the present approach.

몬테카를로 방법에 의한 제어기의 강건성 해석 (A analysis of the robustness of a controller by Monte-Carlo method)

  • 정우용;홍성경;김종성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.630-635
    • /
    • 1993
  • In this paper, the Monte-Carlo method was applied to the controller robustness evaluation problems with respect to the uncertainty of critical plant parameters. The plant studied is a aerial vehicle. The-variable parameters are nondimensional stability derivatives, inertias. The nominal nondimensional stability derivatives ,were obtained from wind tunnel test. Also the nominal inertia parameters were calculated from the mass distribution along the vehicle axes. But the parameters obtained from the test or calculations are at best probable and always contain some uncertainties which one can not figure out. So some kinds of robustness evaluation method should be applied. The parametric robustness of the designed classical controller evaluated by the method turned out to be satisfactory.

  • PDF

불확실한 선형시스템 고유값 배치의 비대칭 강인한계 (Asymmetric Robustness Bounds of Eigenvalue Distribution for Uncertain Linear Systems)

  • 이재천
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.794-799
    • /
    • 1999
  • This study deals with robustness bounds estimation for uncertain linear systems with structured perturbations where the eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based upon the Lyapunov approach, new theorems to estimate allowable perturbation parameter bounds are derived. The theorems are referred to as the zero-order or first-order asymmetric robustness measure depending on the order of the P matrix in the sense of Taylor series expansion of perturbed Lyapunov equation. It is proven that Gao's theorem for the estimation of stability robustness bounds is a special case of proposed zero-order asymmetric robustness measure for eigenvalue assignment. Robustness bounds of perturbed parameters measured by the proposed techniques are asymmetric around the origin and less conservative than those of conventional methods. Numerical examples are given to illustrate proposed methods.

  • PDF

입력에 시간지연이 있는 시스템에 대한 LQG/LTR 기법 (LQG/LTR methods for systems with input delay)

  • 권욱현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.356-361
    • /
    • 1986
  • This paper presents robustness properties of LQ regulators for input-delayed systems. Using frequency-domain representations, the Kalman inequality concerning the return-difference matrix is derived. The stability margins of LQ regulators are investigated using the Kalman inequality when the open-loop system is stable. In order to obtain stability margins a upper bound of the solution of LQ Riccati equations is derived. Finally, the LQG/LTR method to improve the robustness of LQG regulators is obtained and illustrated with an example.

  • PDF