The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.
In this study, we determined the precise coordinates of TBMs (Tidal Bench Marks), which used as the national reference points in coastal area of Korea, using a GPS data analysis SW for the academic and scientific applications, GAMIT/GLOBK. For accurate 3-D positioning of TBM locations, we performed the GPS point surveying according to the national surveying policy and also acquired the GPS data for 48 TBMs located in the western and southern coastal part of Korea. Considering the results of baseline analysis to each observation session obtained from GAMIT module, the baseline analysis was realized to be done precisely because the values of Normalized RMS (NRMS) were mostly less than ${\pm}0.20mm$. Before the network adjustment using GLOBK module, we evaluated the suitability of observations for each session by applying the chi-squared test (${\chi}^2$ test) to the degree of freedom in observed session. An overall distributions of ${\chi}^2$ test were less than 1.0 for all sessions, and the statistical of ${\chi}^2$ test showed the average, 0.267 with minimum and maximum value, 0.063 and 0.653, respectively. Finally, we analyzed the network adjustment for 48 TBMs to reduce the residuals of baseline analysis on each point by connecting with 42 permanent GPS stations in Korea. In the network adjustment procedure, we set up the weighted values of each permanent station to be allocated between 0.9 and 1.14, and also removed the observed points having residual exceeds 4-times of standard deviation ($4{\sigma}$).
Purpose: We evaluated the psychometric properties of a questionnaire on the acceptance of the quality improvement information system (QIIS) among long-term care workers (mostly nurses). Methods: The questionnaire composes of 21 preliminary questions with 5 domains based on the Technology Acceptance Model and related literature reviews. We developed a prototype web-based comprehensive resident assessment system, and collected data from 126 subjects at 75 long-term care facilities and hospitals, who used the system and responded to the questionnaire. A priori factor structure was developed using an exploratory factor analysis and validated by a confirmatory factor analysis; its reliability was also evaluated. Results: A total of 16 items were yielded, and 5 factors were extracted from the explanatory factor analysis: Usage Intention, Perceived Usefulness, Perceived Ease of Use, Social Influence, and Innovative Characteristics. The five-factor structure model had a good fit (Tucker-Lewis index [TLI]=.976; comparative fit index [CFI]=.969; standardized root mean squared residual [SRMR]=.052; root mean square error of approximation [RMSEA]=.048), and the items were internally consistent(Cronbach's ${\alpha}=.91$). Conclusion: The questionnaire was valid and reliable to measure the technology acceptance of QIIS among long-term care workers, using the prototype.
본 논문의 목적은 KOMPSAT-2 영상과 함께 제공되는 RPC를 이용하여 계산된 3차원 지형정보의 정확도를 향상시키는 것이다. 본 논문에서는 보정된 RFM 알고리즘을 제안하였고, 이러한 알고리즘을 이용하여 정확도를 향상시킬 수 있었다. 또한, 지상기준점의 수에 따른 정확도의 변화도 실험하였다. 실험에는 9개의 GCP와 24개의 CP가 사용되었다. 24개의 CP를 이용하여 실험한 결과, 수평방향의 RMSE는 2.20(m)를 나타냈으며, X방향 1.72(m), Y방향 1.37(m), Z방향 2.20(m)의 RMSE를 나타냈다.
Various random regression models with different order of Legendre polynomials for permanent environmental and genetic effects were constructed to predict future milk yield of Holstein cows in Korea. A total of 257,908 test-day (TD) milk yield records from a total of 28,135 cows belonging to 1,090 herds were considered for estimating (co)variance of the random covariate coefficients using an expectation-maximization REML algorithm in an animal mixed model. The variances did not change much between the models, having different order of Legendre polynomial, but a decreasing trend was observed with increase in the order of Legendre polynomial in the model. The R-squared value of the model increased and the residual variance reduced with the increase in order of Legendre polynomial in the model. Therefore, a model with $5^{th}$ order of Legendre polynomial was considered for predicting future milk yield. For predicting the future milk yield of cows, 132,771 TD records from 28,135 cows were randomly selected from the above data by way of preceding partial TD record, and then future milk yields were estimated using incomplete records from each cow randomly retained. Results suggested that we could predict the next four months milk yield with an error deviation of 4 kg. The correlation of more than 70% between predicted and observed values was estimated for the next four months milk yield. Even using only 3 TD records of some cows, the average milk yield of Korean Holstein cows would be predicted with high accuracy if compared with observed milk yield. Persistency of each cow was estimated which might be useful for selecting the cows with higher persistency. The results of the present study suggested the use of a $5^{th}$ order Legendre polynomial to predict the future milk yield of each cow.
Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].
본 연구의 목적은 고형폐기물의 메탄발생 특성을 나타내기 위한 1차 반응식과 S형태 식들의 적합성을 평가하는 것이다. S형태 식은 수정 Gompertz와 Logistic 식을 사용하였다. 모델의 적합성을 평가하기 위해 잔차제곱합, 표준제곱근 오차, Akaike's information criterion 등의 통계분석을 실시하였다. AIC (Akaike's information criterion)는 모델의 변수 개수 차이에 따른 모델 적합성을 비교하기 위하여 적용하였다. 1차 반응식의 경우 지체기를 고려하지 않을 때보다 고려하였을 경우 잔차제곱합과 표준제곱근 오차는 감소하는 것으로 나타났다. 그러나 1차 반응식의 경우 S형태 식보다 AIC가 상대적으로 높게 나타났다. 이는 S형태 식이 1차 반응식보다 메탄발생특성을 나타낼 때에 더욱 적합한 것으로 사료된다.
This paper estimates demand functions of oyster as Kimchi's ingredients of capital area, other areas excluding a capital area, and a whole area in Korea to forecast its demand quantities in 2011~2015. To estimate oyster demand function, this paper uses pooled data produced from Korean housewives over 30 years old in 2009 and 2010. Also, this paper adopts several econometrics methods such as Ordinary Least Squares and Feasible Generalized Least Squares. First of all, to choose appropriate variables of oyster demand functions by area, this paper carries out model's specification with joint significance test. Secondly, to remedy heteroscedasticity with pooled data, this paper attempts residual plotting between estimated squared residuals and estimated dependent variable and then, if it happens, undertakes White test to care the problem. Thirdly, to test multicollinearity between variables with pooled data, this paper checks correlations between variables by area. In this analysis, oyster demand functions of a capital area and a whole area need price of the oyster, price of the cabbage for Gimjang, and income as independent variables. The function on other areas excluding a capital area only needs price of the oyster and income as ones. In addition, the oyster demand function of a whole area needed White test to care a heteroscedasticity problem and demand functions of the other two regions did not have the problem. Thus, first model was estimated by FGLS and second two models were carried out by OLS. The results suggest that oyster demand quantities per a household as Kimchi's ingredients are going to slightly increase in a capital area and a whole area, but slightly decrease in other areas excluding a capital area in 2011~2015. Also, the results show that oyster demand quantities as kimchi's ingredients for total household targeting housewives over 30 years old are going to slightly increase in three areas in 2011~2015.
Objectives: This study aimed to adapt the survey questionnaire designed by Moens et al. (2021) and determine the validity and reliability of the Arabic version of the survey in a sample of the Saudi population experiencing teleworking. Methods: The questionnaire includes 2 sections. The first consists of 13 items measuring the impact of extended telework during the coronavirus disease 2019 (COVID-19) crisis. The second section includes 6 items measuring the impact of the COVID-19 crisis on selfview of telework and digital meetings. The survey instrument was translated based on the guidelines for the cultural adaptation of self-administrated measures. Results: The reliability of the questionnaire responses was measured by Cronbach's alpha. The construct validity was checked through exploratory factor analysis followed by confirmatory factor analysis (CFA) to further assess the factor structure. CFA revealed that the model had excellent fit (root mean square error of approximation, 0.00; comparative fit index, 1.0; Tucker-Lewis index, 1; standardized root mean squared residual, 0.0). Conclusions: The Arabic version of the teleworking questionnaire had high reliability and good validity in assessing experiences and perceptions toward teleworking. While the validated survey examined perceptions and experiences during COVID-19, its use can be extended to capture experiences and perceptions during different crises.
Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.