• Title/Summary/Keyword: sputtering film

Search Result 2,886, Processing Time 0.038 seconds

Effects of Sputter Parameters on Electrochromic Properties of Tungsten Oxide Thin Films Grown by RF Sputtering

  • Nah, Yoon-Chae
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.703-707
    • /
    • 2011
  • The electrochromic properties of tungsten oxide films grown by RF sputtering were investigated. Among the sputter parameters, first the $Ar:O_2$ ratios were controlled with division into only an $O_2$ environment, 1:1 and 4:1. The structure of each film prepared by these conditions was studied by X-ray diffraction, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. The sputter-deposited tungsten oxide films had an amorphous structure regardless of the $Ar:O_2$ ratios. The chemical compositions, however, were different from each other. The stoichiometric structure and low-density film was obtained at higher $O_2$ contents. Electrochemical tests were performed by cyclic voltammetry and chronoamperometry at 0.05 M $H_2SO_4$ solutions. The current density and charge ratio was estimated during the continuous potential and pulse potential cycling at -0.5 V and 1.8 V, respectively. The film grown in a higher oxygen environment had a higher current density and a reversible charge reaction during intercalation and deintercalation. The in-situ transmittance tests were performed by He-Ne laser (633 nm). At higher oxygen contents, a big transmittance difference was observed but the response speed was too slow. This was likely caused by higher film resistivity. Furthermore, the effect of sputtering pressure was also investigated. The structure and surface morphology of each film was observed by X-ray diffraction and scanning electron microscopy. A rough surface was observed at higher sputtering pressure, and this affected the higher transmittance difference and coloration efficiency.

Characterization of the Vanadium Alloy Thin Films Coated by Sputtering (스퍼터링을 이용한 바나듐 합금 박막화에 관한 연구)

  • Yoon, Yongho;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.598-605
    • /
    • 2016
  • V-Cr-Y alloy is a material for hydrogen separation membrane possessing high transmittance and selectivity. In order to increase the rate of hydrogen permeation flux through the membrane, V-Cr-Y thin film was prepared using a sputtering technique and was investigated focusing on its basic properties. Thin film was deposited on a silicon wafer using a target including V (89.8%), Cr (10.0%) and Y(0.2%), and results of EDS analysis confirm that the ratio of metal in thin film agrees with that in the target. Higher sputtering temperature and power resulted in more rapid growth rate of the thin film and larger size of the crystals, and denser and finer crystal structure was observed when lower pressure was applied. An optimal sputtering condition was found with RF, 2mTorr, 300W and ambient temperature, and a suitable V-Cr-Y thin film for hydrogen separation was obtained upon heat treatment of the thin film prepared in this way.

Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network (신경회로망을 이용한 ITO 박막 성장 공정의 모형화)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

Orientation Characteristics of AIN Thin Film using RF Magnetron Sputtering wish Incident Angle (입사각을 가진 RF 마그네트론 스퍼터링법으로 증착한 AIN 박막의 배향 특성)

  • 박영순;김덕규;송민종;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.395-398
    • /
    • 2000
  • Reactive radio frequency (RF)magnetron sputter with incident angle has been used to deposit AlN thin film on a crystalline Si substrate. (002)Preferred orientation of AlN thin film has been obtained at low sputtering pressure. Also it has been shown that depostion rate of AIN thin film is affected by fraction Ar and $N_2$ partial pressure. But substrate temperature didn't affect depostion rate of AIN thin film . As sputtering pressure increased preferred orientation degraded. The internal stress changed from tensile stress to compressive stress as fraction of $N_2$ partial pressure increased. At low nitrogen partial pressure cermet$^{[1]}$ AIN thin film is obtained.

  • PDF

Characterization of Cesium Assisted Sputtering Process Using Design of Experiment (실험계획법을 이용한 세슘보조 스퍼터링 공정의 특성분석)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.165-169
    • /
    • 2007
  • Compared to conventional Indium Tin Oxide (ITO) film deposition methods, cesium (Cs) assisted sputtering offers higher film characteristics in terms of electrical, mechanical and optical properties. However, it showed highly non-linear characteristics between process input factors and equipment responses. Therefore, to maximize film quality, optimization of manufacturing process is essential and process characterization is the first step for process optimization. For this, we designed 2 level design of experiment (DOE) to analyze ITO film characteristics including film thickness, resistivity and transmittance. DC power, pressure, carrier flow, Cs temperature and substrate temperature were selected for process input variables. Through statistical effect analysis methods, relation between three types of ITO film characteristics and five kinds of process inputs are successfully characterized and eventually, it can be used to optimize Cs assisted sputtering processes for various types of film deposition.

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

The study of crystallization to Si films deposited using a sputtering method on a Mo substrate (Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구)

  • 김도영;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

Crystallography properties of $ZnO/AZO/SiO_2/Si$ thin film for FBAR (FBAR용 $ZnO/AZO/SiO_2/Si$ 박막의 결정학적 특성에 관한 연구)

  • Kang, Tai-Young;Keum, Min-Jong;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.880-883
    • /
    • 2003
  • ZnO thin films for Film Bulk Acoustic Resonator(FBAR) were prepared by FTS (Facing Target Sputtering) system. The FTS methode enable to generate high density plasma, and it has a high deposition rate at 1mTorr pressure. Therefore, the ZnO thin films were deposited on $AZO/SiO_2/Si$ substrates with oxygen gas flow rate, and the other sputtering conditions were fixed such as a sputtering current of 0.8A, a substrate temperature at room temperature. AZO bottom electrode were deposited on $SiO_2/Si$ substrate and by Zn:Al(Al:2wt%) metal target. ZnO thin film thickness and the c-axis preferred orientation of ZnO thin film were evaluated by ${\alpha}-step$ and XRD.

  • PDF

Structure, Optical and Electrical Properties of AI-doped ZnO Thin Film Grown in Hydrogen-Incorporated Sputtering Gas

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Munir, Badrul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • Low RF power density was used for preparing transparent conducting AI-doped ZnO (AZO) thin films by RF Magnetron Sputtering on Corning 1737 glass. The dependence of films' structural, optical and electrical properties on sputtering gas, film's thickness and substrate temperature were investigated. Low percent of incorporated H2 in Ar sputtering gas has proven to reduce film's resistivity and sheet resistance as low as $4.1\times10^{-3}{\Omega}.cm$. It also formed new preferred peaks orientation of (101) and (100) which indicated that the c-axis of AZO films was parallel to the substrate. From UN-VIS-NIR Spectrophotometer analysis, it further showed high optical transmittance at about $\~ 90\%$ at visible light spectra (400-700nm).

  • PDF

A Study on the MgO thin film prepared by Unbalanced Magnetron Sputtering in AC PDP (AC PDP의 불평형 마그네트론 스파트링에 의해 형성된 MgO 박막의 특성에 관한 연구)

  • 김영기;박정후;김영대;박정후;조정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.379-382
    • /
    • 1999
  • In this paper, we investigated the characteristics of MgO thin film prepared by unbalanced magnetron sputtering(UBMS) in surface discharge type AC PDP The minimum discharge voltage is obtained for the sample of substrate bias voltage-10V. Moreover the anti-sputtering characteristics of MgO thin film by UBMS is improved about 40% than one of balanced magnetron sputtering(BMS)

  • PDF