• Title/Summary/Keyword: spraying system

Search Result 262, Processing Time 0.023 seconds

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Circuit Modeling and Simulation for Thermoelectric Cooling System using Condensed Water (응축수를 활용한 열전 냉각장치의 회로 모델링 및 시뮬레이션)

  • Lee, Sang-Yun;Jang, Sukyoon;Park, Mignon;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • In this paper, a novel thermoelectric cooling system utilizing condensed water is introduced and its electrical equivalent circuit model is proposed. The introduced system can deals with the condensed water and improves efficiency by spraying the condensed water on heat sink. The electrical equivalent circuit model is derived by combining the circuit model of the classical thermoelectric cooling system with equation of heat exchange. Because the parameters of the model can be defined from not other experimental data but just the data sheet of the thermoelement, the model can be useful to design and develop the controller of the proposed system. We verify that the proposed model is valid and the introduced system is more efficient than the previous thermoelectric cooling system through simulations.

Development of Collision Prevention System for Agricultural Unmanned Helicopter (LiDAR를 이용한 농업용 무인헬기 충돌방지시스템 개발)

  • Jeong, Junho;Gim, Hakseong;Lee, Dongwoo;Suk, Jinyoung;Kim, Seungkeun;Kim, Jingu;Ryu, Si-dae;Kim, Sungnam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.611-619
    • /
    • 2016
  • This paper proposes a collision prevention system for an agricultural unmanned helicopter. The collision prevention system consists of an obstacle detection system, a mapping algorithm, and a collision avoidance algorithm. The obstacle detection system based on a LiDAR sensor is implemented in the unmanned helicopter and acquires distance information of obstacles in real-time. Then, an obstacle mapping is carried out by combining the distance to the obstacles with attitude/location data of the unmanned helicopter. In order to prevent a collision, alert is activated to an operator based on the map when the vehicle approaches to the obstacles. Moreover, the developed collision prevention system is verified through flight test simulating a flight pattern aerial spraying.

The Effect of Cleaning the Intake System of LPG Vehicles on Engine and Emissions (LPG차량 흡기계통 Cleaning이 엔진 및 배출가스에 미치는 영향)

  • Hong, Sung-In;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1229-1235
    • /
    • 2014
  • At the LPG vehicle air intake system, most of dust particles in the air cleaner are removed. However very small particles are not removed and accumulated. The accumulation of carbon in air intake system is going to affect the idle speed control and sensor signal. It also causes engine chattering and transmission troubles of automatic transmission. This is study about cleaning up intake system using cleaning chemical. We can clean up the intake system by spraying cleaning liquid onto intake device when the engine is idling after intake hose is removed from warmed up vehicle. We can obtain the following experimental results by cleaning up ISC, surge tank, intake manifold, intake valves and combustion chamber. According to this results, the stroll valve works correctly and power rate of engine is up to the standard, it is smoothy to control the idling speed when a vehicle pulls up. After cleaning up CO grow down about 0.15%, HC does about 20~100 ppm.

Development of Agriculture Auto Hose Reel by using Wheeled Mobile Robot (바퀴구동 로봇을 이용한 농업용 자동 호스 릴 장치 개발)

  • Kim, Kyoung-Chul;Ko, Min-Hyuc;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1299-1304
    • /
    • 2014
  • This paper is a study for developing an agriculture automatic hose reel of mobile robot. One of the important works in farming is pesticide spraying because it is related to the growth of crops. Therefore, we develop an automatic reel hose and mobile robot. Conducting kinematic analysis of steering performance, the mobile robot is designed to move smoothly even in a small space, and that is verified by simulation. To increase supplying accuracy of the automatic hose reel, the mobile robot use detecting tension mechanism on a hose and a device for the hose deployment. We conduct performance and on-farm evaluation. This system has been maximum speed of 2.5m/s, driving accuracy of ${\pm}0.18^{\circ}$ and driving safety speed of 2m/s. The system would solve an aging population and shortage of workforce in agriculture.

A Study on the Oil-mist/Smoke Collecting Module for the Pure Energy Recycling (청정에너지 회수용 유증기/매연 포집모듈에 관한 연구)

  • Kim, Myung-Soo;Ohkura, Shigenobu;Ham, Koung-Chun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.279-284
    • /
    • 2009
  • Traditionally, so-called "industrial waste gases", such ad exhaust from boilers at industrial installations and a large quantity of soot discharged from power station, before their release into the atmosphere, have been on occasion subjected to an air cleaning process to remove fine particles that may pollute the atmosphere (such as mist and dust containing various powdery or oily substances and moisture from industrial waste gases). The release of industrial waste gases containing these particles directly into the atmosphere poses a serious threat to the earth environment; and recovery of these noxious substances is required by law in some countries and local governments. in urban areas, air pollution from automobile exhaust and others creates a serious condition. Some homes are equipped with and use indoor air purifiers. In many of the kitchens of restaurants, smoke generated during cooking and otherwise contaminated air are cleansed by air purifiers before being released outside or recycled inside. For the dust collecting devices to recover the fine particles contained in contaminated air, the cause for air pollution and how to purify air, many types based on various principles are known. Specifically, classified based on theories of particle collection, filtration, gravity, inertia, centrifugation, electricity, and cleaning types are cited as available processes. Among them, an appropriate type is selected according to the size or type of fine particles to be collected and conditions for installation. For the efficiency of dust collection, a filtration system (by using bag filters and others) and electric system are particularly outstanding and are therefore used widely in various areas of industry. In this research, rotary type high performance oil mist and smoke collecting system with self auto cleaning device equipped with the cleaning fluid spraying section is investigated.

  • PDF

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Studies on the Establishment of Year-Round Fresh Forage Production System through the Kyungpook University's Spraying Hydrophonics -II. Fresh Corn Forage Production in Summer (경대식(慶大式) 분무(噴霧) 수경재배(水耕栽培)를 통(通)한 청초(靑草) 사료(飼料)의 연중(年中) 생산체계(生産体系) 확립(確立)에 관(關)한 연구(硏究) -제(第) II 보(報). 여름철 옥수수 청초(靑草) 사료생산(飼料生産)에 관(關)하여)

  • Kim, Dal Ung;Kim, In Seob
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.29-33
    • /
    • 1984
  • From June 28th to July 17th in 1985, this study was performed to obtain the information of the fresh corn forage production through the spraying hydrophonics in summer. The experiments were conducted in vinyl house on Kyungpook University's Experimental Station. The results obtained were as follows: It was suggested that the treatment of soaking for 24 hrs and followed by the pretreatment for 48 hrs was better than other treatments. Seed cost for the production of 1 kg fresh forage was the most inexpensive at the seeding rate of 450 g per $30{\times}60cm$ tray than other seeding rates. Application of 1000 times diluted Hyponex solution (1000X Hyponex) or 300 times diluted Yogen solution (300X Yogen) one time per day resulted in the heavier fresh weight than the other treatments. Treatments of 300X Yogen and 500X Yogen gave the better fresh weight in one application per two days and per three days, respectively. But, this method was not useful in summer because the lowest seed cost for the production 1kg fresh forage was 73Won, and collection of the fresh forage from the mountain range was easy.

  • PDF

Properties of De/Anti-icing Fluid for High Speed Railway Rolling Stock Based on Propylene-glycol Containing Water Repellent Agent (발수 성분을 포함하는 프로필렌글리콜(PG) 기반 고속철도차량용 제·방빙액의 특성)

  • Jin-Myeong, Park;Tae-Hyun, Kim;Jung-Mu, Yang;Cha-Jung, Yun;Hong-Ki, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.69-74
    • /
    • 2023
  • As a chemical de-icing method, propylene glycol de-icing fluid is applicable for melting ice caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts in winter. By spraying propylene-glycol de-icing fluid on high-speed rail rolling stock and bogie parts in advance to minimize snow adhesion, ice-melting efficiency can be further improved. In the case of high-speed rail rolling stock, even if propylene-glycol de-icing fluid is sprayed, the anti-icing performance is poor because the fluid is almost lost on the surface of the vehicle when operating at high speed. In this study, in order to prevent freezing caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts, we have investigated the properties of propylene-glycol de/anti-icing fluid containing water-repellent agents that prevent surface freezing. We tried to find the optimal component for de/anti-icing fluid for high-speed rail rolling stock by evaluating the ice melting performance, contact angle, and anti-icing performance according to the types of water-repellent agent. As a result of the evaluation, it was confirmed that an de/anti-icing fluid containing an ethoxysilane-type water repellent agent was most suitable.