DOI QR코드

DOI QR Code

Development of Collision Prevention System for Agricultural Unmanned Helicopter

LiDAR를 이용한 농업용 무인헬기 충돌방지시스템 개발

  • Received : 2015.08.20
  • Accepted : 2016.06.04
  • Published : 2016.07.01

Abstract

This paper proposes a collision prevention system for an agricultural unmanned helicopter. The collision prevention system consists of an obstacle detection system, a mapping algorithm, and a collision avoidance algorithm. The obstacle detection system based on a LiDAR sensor is implemented in the unmanned helicopter and acquires distance information of obstacles in real-time. Then, an obstacle mapping is carried out by combining the distance to the obstacles with attitude/location data of the unmanned helicopter. In order to prevent a collision, alert is activated to an operator based on the map when the vehicle approaches to the obstacles. Moreover, the developed collision prevention system is verified through flight test simulating a flight pattern aerial spraying.

본 논문에서는 농업용 무인헬기를 위한 LiDAR 기반 충돌방지시스템을 제안하고 개발과정을 소개한다. 충돌방지시스템은 장애물 검출 시스템, 매핑 알고리즘, 충돌회피 알고리즘으로 구성된다. LiDAR 기반의 장애물 검출 시스템은 무인헬기에 탑재되어 실시간으로 장애물 정보를 획득하며, 이를 통해 획득한 정보와 무인헬기 자세/위치 정보를 융합하여 충돌위험성이 있는 장애물에 대해 격자 지도 기법을 적용한 매핑을 수행한다. 무인헬기가 장애물에 접근할 시 확보된 지형정보를 기반으로 충돌방지 경고 생성을 위해 종/횡방향 기동을 고려한 충돌방지 알고리즘을 구현하며, 이를 통해 운용자에게 전달해 회피 기동을 수행한다. 구축된 시스템은 무인헬기를 이용해 항공방제 패턴을 모사한 비행시험을 수행하였으며, 비행시험 결과 충돌방지 성능 및 가능성을 확인하였다.

Keywords

References

  1. http://www.yamahaprecisionagriculture.com
  2. https://www.remo-h.com/
  3. Yoon, H., Song, H., and Park, K., "A phase-shift laser scanner based on a time-counting method for high linearity performance," Review of Scientific Instruments, Vol. 82, 2011.
  4. Park, J., Kim, J., and Kim, J., "The Research of Unmanned Autonomous Navigation's Map Matching using Vehicle Model and LIDAR," Journal of Institute of Control, Robotics and Systems 17(5), May. 2011, pp.451-459.(in Korean) https://doi.org/10.5302/J.ICROS.2011.17.5.451
  5. Zhang, J. and Singh, S., "Visual-LiDAR Odometry and Mapping: Low-drift, Robust, and Fast," Proceedings of 2015 IEEE International Conferecne on Robotics and Automation(ICRA), May. 2015, pp.2174-2181.
  6. Ariyasu, E., Koizumi, M., Ikubo, M., and Hatake, S., "Application of Mobile LIDAR Mapping for Damage Survey after Great East Japan Earthquake," Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Sep. 2012, pp.573-576.
  7. Joyce, K. E., Samsonov, S. V., Levick, S. R., Engelbrecht, J., and Belliss, S., "Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data," Natural hazards, Vol. 73 Issue 2, 2013, pp.137-163. https://doi.org/10.1007/s11069-014-1122-7
  8. Grebby, S., Cunningham, D., Naden, J., and Tansey, K., "Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus," International Journal of Earth Sciences, Vol. 101, Issue 6, 2012, pp.1645-1660. https://doi.org/10.1007/s00531-011-0742-3
  9. Lee, W., "Object-oriented Classification of Urban Areas Using LiDAR and Aerial Images," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 3, 2015, pp.173-179. https://doi.org/10.7848/ksgpc.2015.33.3.173
  10. Cheng, L., Wu, Y., Wang, Y., Zhong, L., Chen, Y., and Li, M., "Three-Dimensional Reconstruction of Large Multilayer Interchange Bridge Using Airborne LiDAR Data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 2, Feb. 2015, pp.691-708. https://doi.org/10.1109/JSTARS.2014.2363463
  11. Lin, Y., Hyyppä, J., and Jaakkola, A., "Mini-UAV-borne LIDAR for fine-scale mapping," Geoscience and Remote Sensing Letters, IEEE, Vol. 8, No. 3, May. 2011, pp.426-430. https://doi.org/10.1109/LGRS.2010.2079913
  12. Huh, S., Cho, S., and Shim, D. H., "3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LiDAR," Journal of Korea Robotics Society, Vol. 9, No. 3, 2014, pp.154-159. (in Korean) https://doi.org/10.7746/jkros.2014.9.3.154
  13. Choi, W., Cho, D., Song, H., Kim, J., Ko, S., and Kim, H., "A 5-DOF Ground Testbed for Developing Rendezvous/Docking Algorithm of a Nano-satellite," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 12, Dec. 2015, pp.1124-1131. (in Korean) https://doi.org/10.5139/JKSAS.2015.43.12.1124
  14. Lee, C., Park, Y., and Park, C., "Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 1, Jan. 2016, pp.12-22. (in Korean) https://doi.org/10.5139/JKSAS.2016.44.1.12
  15. https://www.sick.com/
  16. https://store.3drobotics.com/t/developer
  17. Jeong, J., Lee, M., Bang, K., Kim, D., Suk, J., Kim, S., Jung, D., and Park, J., "Operation of an Autonomous Unmanned Helicopter for Captive Flight Test," Proceedings of 2013 KSAS Spring Conference, Apr. 2013, pp.902-905.(in Korean)