• Title/Summary/Keyword: spot 용접

Search Result 644, Processing Time 0.026 seconds

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

Optimum Design for Frame Bracket of Electrical Panels for Improved Fatigue Strength (함정용 배전반의 피로강도 향상을 위한 프레임 브래킷의 최적설계)

  • Kim, Myung-Hyun;Choi, Jae-Young;Kang, Sung-Won;Chung, Ji-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.206-212
    • /
    • 2006
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The electrical panels may be exposed to vibration and fatigue loadings from internal and external sources as well as wave loadings which result into a crack and fracture due to the decrease of fatigue strength. It is also well known that welded joints including brackets within steel structures .such as vessels and bridges are vulnerable against such repeated loadings. This study introduces a preliminary result of the optimized shape of frame bracket consisting of electrical panels in navel vessels against fatigue loading and their fatigue life at brackets of electrical panels by means of hot spot stress and structural stress methods.

Electromagnetic Indirect Induction Fluid Heating System using Series Resonant PWM Inverter and Its Performance Evaluations (직렬공진 PWM인버터를 이용한 전자간절유도가열 열유체 에너지시스템과 그 성능평가)

  • 김용주;김기환;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • This paper is described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20 kHz to 50 kHz. A specially designed induction heater is composed of laminated stainless plates, which have many tiny holes and are interconnected by spot welding. This heater is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe (장기사용된 1Cr-0.5Mo 주증기관의 수명평가)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

Characteristics of the Nd:YAG laser Spot Welding in $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ Bulk Metallic Glass Alloy ($Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ 벌크비정질 합금의 Nd:YAG 레이저 점용접 특성)

  • Kim, J.H.;Lee, J.H.;Shin, S.Y.;Bae, J.C.;Lee, C.H.
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Weldability is largely dependent on the phase evolution and the microstructure of the weld. For the weldability of the $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass, the crystallization affects the sensitivity of the weld to the brittle failure. In order to suppress the irreversible crystallization, Nd:YAG laser welding was chosen. The pulsed Nd:YAG laser was irradiated onto the BMG plate and the effects of the pulse shape [peak power intensity and pulse duration time] on the crystallinity were evaluated.

  • PDF

Investigation of Shrinkage around Small Box of Short Span Slab (단경간 슬래브 중앙 소형박스(개구부)주변의 건조수축 거동 조사 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • There are small box opening for inserting of electric lamp box in the slab of apartment. Around this box opening, we normally use the detailing of WWF or plastic ring strengthening to protect cracks induced by shrinkage. The shrinkage amount of slab box around was measured and analysed in order to consider validity of these strengthening methods and to find out economical alternative. Alternative of strengthening methods are normally used strengthening methods in construction companies, which are WWF strengthening, plastic ring strengthening and no strengthening methods. The shrinkage amount was measured using contact guage at the spot of tip attached around the box on slab of small area unit apartment which have small exclusive area below $59m^2$. Measured data shows that there are no big differences between all the 3 strengthening methods and Measure data range is $-264{\mu}{\varepsilon}{\sim}+216{\mu}{\varepsilon}$. Measured shrinkage is on trend slightly increase till 3~5weeks after removal of forms and then decrease. But amount of shrinkage are very low for all the slabs and there are no probabilities of concrete crack by shrinkage.

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter (LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성)

  • Lee, Hee-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.286-291
    • /
    • 2015
  • LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].

A Study on the Development of Superheater Using High-Frequency Resonant Inverter for Induction Heating (유도가열용 고주파 공진형 인버터를 이용한 과열증기 발생장치 개발에 관한 연구)

  • 신대철;권혁민;김기환;김용주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2004
  • This paper is described the indirect induction heated boiler system and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20〔KHz〕 to 50〔KHz〕. A specially designed Induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the resonant inverter. In the induction heater, it's primary heating section creates low-pressure saturated steam and secondary heating section generates heat distribution evaporating fluid from the turbulence fluid which is flowing through the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from the practical point of view.