• Title/Summary/Keyword: spore analysis

Search Result 187, Processing Time 0.026 seconds

Isolation and Identification of Actinomycetes F-97 Producing Tyrosinase Inhibitor (Tyrosinase 저해제를 생성하는 방선균 F-97의 분리 및 동정)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Gwan-Pil;Kim, Jin-O;Yi, Dong-Heui
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.1
    • /
    • pp.97-102
    • /
    • 2009
  • In order to obtain a non-toxic and more active and stable microorganism-produced tyrosinase inhibitor, we isolated actinomycetes F-97, a producer of tyrosinase inhibitor, from soil. The aerial hyphae of this strain were gray in color with tree types. Under the microscopic examination, the isolate formed a spiral aerial spore mass with a smooth surface. The analysis of cell wall acid hydrolysate of the isolate revealed the presence of LL-diaminopimelic acid(LL-DAP). No specific sugar was detected. From these results and the cultural and physiological characteristics described in the Bergey's Manual, actinomycetes F-97 was identificated as, or best-matched to, Streptomyces aburaviensis.

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Kim, Yun Ki;Hwang, Hyun Chul;Ryu, Sam Gon;Chai, Young Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.750-758
    • /
    • 2013
  • Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.

Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67

  • Lee, Kwang Youll;Kong, Hyun-Gi;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.373-380
    • /
    • 2012
  • Burkholderia pyrrocinia CH-67 is a biocontrol bacterium with strong antifungal activity against several plant pathogenic fungi. Transposon mutagenesis was performed to identify the genes responsible for the antifungal activity of B. pyrrocinia CH-67. Of the 2,500 mutants tested using the Fulvia fulva spore screening method, a mutant deficient in antifungal activity, M208, was selected. DNA sequence analysis of the transposon-inserted region revealed that a gene encoding an adenylate kinase-related kinase was disrupted in M208. Antifungal activity was restored in M208 when a full-length adenylate kinase gene with its promoter was introduced in trans. The deduced amino acid sequence of adenylate kinase from CH-67 was 80% identical to that of B. cenocepacia MCO-3. Adenosine diphosphate supplementation or high levels of adenosine triphosphate and adenosine monophosphate together restored antifungal activity in M208, suggesting that adenylate kinase of B. pyrrocinia CH-67 is involved in antifungal activity expression.

Effects of Ionizing Radiation on Postharvest Fungal Pathogens

  • Jeong, Rae-Dong;Shin, Eun-Jung;Chu, Eun-Hee;Park, Hae-Jun
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.176-180
    • /
    • 2015
  • Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.

Study of Cytotoxicity of an Actinomycete Isolated in Korea (토양에서 분리한 방선균의 세포 독성에 관한 연구)

  • Park, Joon-Koo;Choi, Boung-Don;Kim, Seung-Chul;Ryeom, Kon
    • Environmental Analysis Health and Toxicology
    • /
    • v.8 no.3_4
    • /
    • pp.7-12
    • /
    • 1993
  • An Actinomycete strain isolated from Mt. Dea-Dun had a strong antifungal activity. The culture brith produced by isolated strain showed only antifungal activity against fungi with the exception of yeast and bacteria. It was heat stable, dissolved in ehtylacetate. The concentrated antifungal agent showed cytotoxicity against HEP-2 and HeLa as tumor cell line, and showed weak cytotoxicity against VERO 36 as normal cell line. Morphological and physiological characteristics were tested with isolated strain. The spore color of isolated strain was gray. It had a short chain and produced brown colored lytic substance in yeast extract-malt agar. The cell wall of isolated strain was composed of meso-DAP, and we suggested it as genus Actinomadura. In the existing of chemical inhibitor, isolated strain grew on the condition of 0.0001% crystal violet, 0.1% phenol, 0.01% sodium azide and 10% sodium chloride. Carbon utilization of isolated strain was shown that glucose, sucrose, manitol and sodium citrate were well utilized.

  • PDF

Kosinostatin, a Major Secondary Metabolite Isolated from the Culture Filtrate of Streptomyces violaceusniger Strain HAL64

  • EI-Naggar, Moustafa Y.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.262-267
    • /
    • 2007
  • During a screening program, an actinomycete strain isolated from the Egyptian soil was investigated for its potential to show antimicrobial activity. The identification of this isolate was performed according to spore morphology and cell wall chemo-type, which suggested that this strain is a streptomycete. Further cultural, physiological characteristics and the analysis of the nucleotide sequence of the 16S rRNA gene (1480 bp) of this isolate indicated that this strain is identical to Streptomyces violaceusniger (accession number EF063682) and then designated S. violaceusniger strain HAL64. In its culture supernatant, this organism could produce one major compound strongly inhibits the growth of Gram-positive but the inhibition of Gram-negative indicator bacteria was lower. The antibiotic was separated by silica gel column chromatography and then purified on a sephadex LH-20 column and finally the purity was checked by HPLC. The chemical structure of the purified compound was determined using spectroscopic analyses (molecular formula of $C_{33}H_{32}N_{2}O_{10}$ and molecular weight of 617.21) and found to be identical to the kosinostatin, a quinocycline antibiotic which is known to be produced by Micromonspora sp. TP-A0468 (Igarashi et al., 2002) and to quinocycline B isolated from Streptomyces aureofaciens (Celmer et al., 1958). Although the antibiotic is known, the newly isolated strain was able to produce the antibiotic as a major product providing an important biotechnological downstream advantage.

Diversity of Marine-Derived Aspergillus from Tidal Mudflats and Sea Sand in Korea

  • Lee, Seobihn;Park, Myung Soo;Lim, Young Woon
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.237-247
    • /
    • 2016
  • Aspergillus (Trichocomaceae, Eurotiales, and Ascomycota) is a genus of well-defined asexual spore-forming fungi that produce valuable compounds such as secondary metabolites and enzymes; however, some species are also responsible for diseases in plants and animals, including humans. To date, 26 Aspergillus species have been reported in Korea, with most species located in terrestrial environments. In our study, Aspergillus species were isolated from mudflats and sea sand along the western and southern coasts of Korea. A total of 84 strains were isolated and identified as 17 Aspergillus species in 11 sections on the basis of both morphological characteristics and sequence analysis of the calmodulin gene (CaM) locus. Commonly isolated species were A. fumigatus (26 strains), A. sydowii (14 strains), and A. terreus (10 strains). The diversity of Aspergillus species isolated from mudflats (13 species) was higher than the diversity of those from sea sand (five species). Four identified species-A. caesiellus, A. montenegroi, A. rhizopodus, and A. tabacinus-are in the first records in Korea. Here, we provide detailed descriptions of the morphological characteristics of these four species.

Antifungal Activities of Streptomyces blastmyceticus Strain 12-6 Against Plant Pathogenic Fungi

  • Kim, Yeon Ju;Kim, Jae-heon;Rho, Jae-Young
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.329-334
    • /
    • 2019
  • Streptomyces blastmyceticus strain 12-6 was isolated from a forest soil sample of Cheonan area on the basis of strong antifungal activities against plant pathogenic fungi. Butanol extracts of the cultural filtrates were active against C. acutatum, C. coccodes, C. gloeosporioides, F. oxysporum, and T. roseum. Active fractions were prepared by thin layer chromatography using silica gel plate; 12-6-2 ($R_f$ 0.36), 12-6-3 ($R_f$ 0.44). Scanning electron microscopy showed that the active fractions caused a change in surface texture of fungal spores from smooth surface to wrinkled surface. The lethal effect on the spores of the active fractions varied from 56% to 100%. It was shown that the spores of C. acutatum were more sensitive to the antifungal fractions than the spores of F. oxysporum. Fluorescence staining using TOTO-1 indicated that the antifungal fractions could make the spores more sensitive to the fluorescence dye. Thus, it was suggested that antifungal agents prepared in this study exhibited the antifungal activity by damaging the plasma membrane of both fungal spores and hyphae. Identification of antifungal agents in the active fraction using GC-MS analysis revealed the presence of cyclo-(Leu-Pro) and 9-octadecenamide as major components that have already been known as antifungal substances.

Spore Diversity of Arbuscular Mycorrhizal Fungi in Upo Wetland (우포 습지에 분포하는 수지상균근균 포자의 다양성)

  • Ko, Kang-Moon;Park, Hyeok;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.19-27
    • /
    • 2019
  • We extracted arbuscular mycorrhizal fungal (AMF) spores from rhizospheres of three plants from Upo Wetland, Korea. We identified the isolated AMF spores based on morphological characteristics and phylogenetic analysis of partial 18S rDNA nucleotide sequences. The species diversity of AMF spores was calculated among the study sites and host plants. Consequently, nine species from six genera of AMF spores were identified. We confirmed the species diversity of the AMF spores in rhizospheres affected by host plants in the wetland. In the course of this study, we confirmed a previously unreported AMF species in Korea: Diversispora epigaea. We described the morphological features and molecular characteristics of this previously unreported AMF species.