• Title/Summary/Keyword: spherical k-means

Search Result 54, Processing Time 0.026 seconds

선형가속기를 이용한 방사선 수술시 Dynamical Field Shaping에 의한 선량분포 (Dose Distributions for Ll NAC Radiosurgery with Dynamically Shaping Fields)

  • 서태석;윤세철;김문찬;장홍석;박용휘;신경섭;박찬일;하성환;강위생
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.431-437
    • /
    • 1993
  • 방사선 수술에 있어서 선량 형태를 변형시키기 위한 조사변수들의 선택은 중요한 문제이다. 선형가속기를 이용한 뇌정위적 방사선 수술은 통상 원형 조사면과 다중 arc를 이용하여 구형 형태의 선량을 얻는 방법을 이용하고 있다. 그러나, 병소가 임의의 형태인 경우 구형의 선량으로서는 병소 이외에 정상조직도 많은 선량이 가해지게 된다. 현재 병소형태의 선량을 얻기 위한 방법으로 multiple isocenters를 이용하거나, 각 arc에 달리 weights를 주는 방법을 사용하고 있다. 본 논문에서는 병소의 beam's eye view를 이용하여 조사 위치에서 조사면을 shaping하는 새로운 방법에 대하여 논의하고자 한다. 이러한 conformal조사 방법은 병소와 정상조직의 가시적인 3차원 선량분포와 dose volume histogram의 분석 방법을 통하여 검증되었다. conformal 방법을 이용한 경우 multiple isocenter를 이용한 경우보다 적은 arc 수를 가지고도 상응하는 dose gradient와 더 나은 선량의 균질성을 얻을 수 있었다.

  • PDF

쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성 (Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon)

  • 조운;김용일;윤재국;유정준;윤하나;김성수;김종휘
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.129-137
    • /
    • 2013
  • 쌀밥을 출발물질로 활용하고 수열합성법과 화학적 활성화를 위한 KOH용액 진공함침 등의 방법으로 제조된 활성탄의 전기이중층 초고용량 커패시터의 전극에 대한 전기화학적 전극특성을 확인 하였다. 제조된 활성탄의 물성을 SEM, EDS, XRD, TG, 비표면적, 기공크기 분포 등의 분석을 통해 조사하였다. 또한, 슈퍼커패시터의 전극에 대한 순환전류 측정과 교류 임피던스 측정 실험을 통해 전기화학적 특성을 확인하였다. 수열합성법을 통하여 직경 $5{\sim}7{\mu}m$ 인 구형의 탄소 입자를 얻었으며 활성화 온도 $800^{\circ}C$로 제조된 활성탄은 비표면적이 $1631.8cm^2/g$, 기공크기 분포가 0.9~2.1 nm에 집중적으로 분포하였으며, 마이크로 기공체적이 $0.6154cm^3/g$ 임을 알 수 있었다. 이 활성탄을 사용하여 제작된 전극은 6M KOH 전해액에서 비용량 236 F/g(@5 mV/s), 194 F/g(@100 mV/s), 137 F/g(@500 mV/s)의 우수한 특성을 나타내었다. 충방전 싸이클 수명시험 결과, 200 mV/s의 주사속도에서 100,000회 충방전 시험 후에도 초기용량 대비 91.2%의 용량을 유지함을 확인하였다.

아말감의 구강내 부식 및 인공 부식에 관한 연구 (A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION)

  • 임병목;권혁춘;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

K-SVD 기반 사전 훈련과 비음수 행렬 분해 기법을 이용한 중첩음향이벤트 검출 (Overlapping Sound Event Detection Using NMF with K-SVD Based Dictionary Learning)

  • 최현식;금민석;고한석
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.234-239
    • /
    • 2015
  • 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF) 기법은 사전행렬과 크기성분을 번갈아 가며 업데이트 하면서 구하는 방법이며 직관적 해석 및 구현의 용이성으로 인해 중첩음향이벤트 분리 및 검출방법으로 널리 활용되었다. 하지만 비음수 행렬 분해의 고유한 특성인 부분기반표현(part-based representation)으로 인해 하나의 음향 이벤트를 구성 하는 사전(dictionary)의 파편화 현상이 발생하고, 다른 음향이벤트와 중복되는 사전이 생성되어 결과적으로 분리, 검출 성능의 저하 문제가 발생한다. 본 논문에서는 사전 획득 단계의 부분기반표현에 의한 문제를 해소하기 위해 K-Singular Value Decomposition(K-SVD)을 사용하여 사전을 획득하고, 음향이벤트 검출 단계 에서는 기존 비음수 행렬 분해 기법을 이용하여 크기를 획득 한다. 제안하는 방식을 통해 비음수 행렬 분해 기반의 사전을 사용하는 경우보다 중첩음향이벤트 검출 성능이 개선되는 것을 확인하였다.

반응고 Al-Zn-Mg계 합금의 반용융 압출을 위한 재가열 시 결정립 성장 억제에 미치는 Ca 첨가의 영향 (The Effect of Ca Addition on the Grain Growth Inhibition During Reheating Process of Al-Zn-Mg Al Alloys for Thixo-extrusion)

  • 박형원;김대환;심성용;김희경;성봉학;최창옥;임수근
    • 한국주조공학회지
    • /
    • 제31권6호
    • /
    • pp.347-353
    • /
    • 2011
  • There is thixo-extrusion to form high strength aluminum alloy. But, it is a problem that grains become grain coarsening during reheating process because the alloy was exposed at high temperature. In order to solve grain growth during reheating process, calcium was added in Al-Zn-Mg alloys. Primary a grain sizes of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca were measured with image analyzer after reheating. Measured primary a grain sizes were applied to LSW(Lifshitz-Slyozov and Wagner) equation to check the effect of Ca on grain coarsening. Coarsening rate constant K values of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca alloys were $371\;mm^3s^{-1}$, $247\;mm^3s^{-1}$, $198\;mm^3s^{-1}$ and $166 mm^3s^{-1}$, respectively. As increasing calcium content, K value decreased which means grains are refined. Also, grains of calcium addition were more spherical than that of calcium free.

반도체 작업환경 내 부산물로 생성되는 실리카 입자의 크기, 형상 및 결정 구조 (Size, Shape, and Crystal Structure of Silica Particles Generated as By-products in the Semiconductor Workplace)

  • 최광민;여진희;정명구;김관식;조수헌
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.36-44
    • /
    • 2015
  • Objectives: This study aimed to elucidate the physicochemical properties of silica powder and airborne particles as by-products generated from fabrication processes to reduce unknown risk factors in the semiconductor manufacturing work environment. Materials and Methods: Sampling was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. Thirty-two powder and airborne by-product samples, diffusion(10), chemical vapor deposition(10), chemical mechanical polishing(5), clean(5), etch process(2), were collected from inner chamber parts from process and 1st scrubber equipment during maintenance and process operation. The chemical composition, size, shape, and crystal structure of silica by-product particles were determined by using scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy, and x-ray diffractometry. Results: All powder and airborne particle samples were composed of oxygen(O) and silicon(Si), which means silica particle. The by-product particles were nearly spherical $SiO_2$ and the particle size ranged 25 nm to $50{\mu}m$, and most of the particles were usually agglomerated within a particle size range from approximately 25 nm to 500 nm. In addition, the crystal structure of the silica powder particles was found to be an amorphous silica. Conclusions: The silica by-product particles generated from the semiconductor manufacturing processes are amorphous $SiO_2$, which is considered a less toxic form. These results should provide useful information for alternative strategies to improve the work environment and workers' health.

Pt 나노분말이 분산된 SiO2 박막의 구조 및 전기적 특성 제어 (Controlling Structural and Electrical Properties of Pt Nanopowder-Dispersed SiO2 Film)

  • 이재호;신인주;이성우;김형철;최병준
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.355-359
    • /
    • 2014
  • Pt nanopowder-dispersed $SiO_2$ (SOP) films were prepared by RF co-sputtering method using Pt and $SiO_2$ targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of $SiO_2$ was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.

넙치 (Paralichthys olivaceus)의 웅성생식세포 발달에 관한 미세구조적 연구 (Ultrastructural Study on the Development of Male Germ Cell of the Olive Flounder, Paralichthys olivaceus (Teleostei: Pleuronectidae))

  • 김재원;김봉석;최철영;이정식
    • Applied Microscopy
    • /
    • 제33권3호
    • /
    • pp.243-250
    • /
    • 2003
  • 넙치의 웅성생식세포의 발달과 정자 구조를 광학현미경과 투과전자현미경을 이용하여 관찰하였다. 곡정세관의 각 소낭내의 생식상피에서는 분열 증식중인 정원세포군이 염기성 염료에 미약하게 반응하기 시작한다. 정소조직의 계속적인 발달로 각 소낭내에는 분열증식중인 정모세포군을 관찰할 수 있다. 이후 소엽내강에는 상당수의 초기 정세포를 관찰할 수 있으며, 더욱 더 발달된 변태된 정자를 볼 수 있다. 투과전자현미경에 의한 관찰에서 간기의 정원세포는 세포질이 미약한 반면, 커다란 핵과 뚜렷한 인을 가진다. 제1정모세포의 핵내에서는 연접사 복합체 (synaptonemal complex)가 뚜렷하고 세포질내에서는 세포소기관이 증가한다. 제2정모세포의 핵질은 응축되어 높은 전자밀도를 나타낸다. 정세포는 세포질과 핵질이 응축되면서 타원형의 형태를 취하고, 미토콘드리아는 핵의 후방으로 위치한다. 변태를 마친 정자는 두부와 미부로 구성되며 무첨체형이다. 두부 후방에서는 cytoplasmic collar는 6개의 미토콘드리아를 가진다. 미부에서는 axonemal lateral fin을 관찰할 수 있다. 미부 편모 축사의 횡단면은 "9+2"의 미세소관 구조를 나타낸다.

고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동 (Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM))

  • 송준우;김효섭;김홍물;김택수;홍순직
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성 (Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method)

  • 이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.