DOI QR코드

DOI QR Code

Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon

쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성

  • Jo, Un (Department of Energy Storage Research, Korea Institute of Energy Research) ;
  • Kim, Yong-Il (Department of Energy Storage Research, Korea Institute of Energy Research) ;
  • Yoon, Jae-Kook (Department of Energy Storage Research, Korea Institute of Energy Research) ;
  • Yoo, Jung-Joon (Department of Energy Storage Research, Korea Institute of Energy Research) ;
  • Yoon, Ha-Na (Department of Energy Storage Research, Korea Institute of Energy Research) ;
  • Kim, Sung-Soo (The Department of Green Energy Technology, Graduate School of Green Energy Technology, Chung-nam National University) ;
  • Kim, Jong-Huy (Department of Energy Storage Research, Korea Institute of Energy Research)
  • 조운 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단) ;
  • 김용일 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단) ;
  • 윤재국 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단) ;
  • 유정준 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단) ;
  • 윤하나 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원 녹색에너지기술학과) ;
  • 김종휘 (한국에너지기술연구원 효율소재연구본부 에너지저장연구단)
  • Received : 2013.07.23
  • Accepted : 2013.07.29
  • Published : 2013.08.31

Abstract

From the cooked-rice as a raw material, activated carbons throughout a hydrothermal synthesis and vacuum soak of KOH for chemical activation were obtained. Activated carbon electrodes for electric double layer supercapacitors were prepared and electrochemical characteristics were examined. Including the specific surface area by BET method and pore size distribution by NLDFT method, physical properties of activated carbons were investigated by means of SEM, EDS, XRD, and TG analyses. Cycle voltammetry and AC-impedance measurements were conducted to confirm the electrochemical characteristics for the electrodes. From hydrothermal synthesis, $5{\sim}7{\mu}m$ diameters of spherical carbons were obtained. After the activation at $800^{\circ}C$, it was notable for the activated carbon to be the specific surface $1631.8cm^2/g$, pore size distribution in 0.9~2.1 nm, and micro-pore volume $0.6154cm^3/g$. As electrochemical characteristics of the activated carbon electrode in 6M KOH electrolyte, it was confirmed that the specific capacitances of 236, 194, and 137 F/g at the scan rate of 5, 100, and 500 mV/s respectively were exhibited and 91.2% of initial capacitance after 100,000 cycles at 200 mV/s was maintained.

쌀밥을 출발물질로 활용하고 수열합성법과 화학적 활성화를 위한 KOH용액 진공함침 등의 방법으로 제조된 활성탄의 전기이중층 초고용량 커패시터의 전극에 대한 전기화학적 전극특성을 확인 하였다. 제조된 활성탄의 물성을 SEM, EDS, XRD, TG, 비표면적, 기공크기 분포 등의 분석을 통해 조사하였다. 또한, 슈퍼커패시터의 전극에 대한 순환전류 측정과 교류 임피던스 측정 실험을 통해 전기화학적 특성을 확인하였다. 수열합성법을 통하여 직경 $5{\sim}7{\mu}m$ 인 구형의 탄소 입자를 얻었으며 활성화 온도 $800^{\circ}C$로 제조된 활성탄은 비표면적이 $1631.8cm^2/g$, 기공크기 분포가 0.9~2.1 nm에 집중적으로 분포하였으며, 마이크로 기공체적이 $0.6154cm^3/g$ 임을 알 수 있었다. 이 활성탄을 사용하여 제작된 전극은 6M KOH 전해액에서 비용량 236 F/g(@5 mV/s), 194 F/g(@100 mV/s), 137 F/g(@500 mV/s)의 우수한 특성을 나타내었다. 충방전 싸이클 수명시험 결과, 200 mV/s의 주사속도에서 100,000회 충방전 시험 후에도 초기용량 대비 91.2%의 용량을 유지함을 확인하였다.

Keywords

References

  1. S. Zhao, C. Y. Wang, M. M. Chen, J. Wang, Z. Q. Shi, 'Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor' Journal of Physics and Chemistry of Solids, 70, 1256 (2009). https://doi.org/10.1016/j.jpcs.2009.07.004
  2. H. Zhu, X. L. Wang, F. Yang, X. R. Yang, 'Promising Carbons for Supercapacitors Derived from Fungi' Adv. Mater., 23, 2745 (2011). https://doi.org/10.1002/adma.201100901
  3. M. S. Balathanigaimani, W. G. Shim, M. J. Lee, C. Kim, J. W. Lee, H. Moon, 'Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors' Electrochem. Commun., 10, 868 (2008). https://doi.org/10.1016/j.elecom.2008.04.003
  4. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, 'Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance' ACS Appl. Mater. Interfaces, 4, 5800 (2012). https://doi.org/10.1021/am302077c
  5. H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, 'Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy' ACS nano, 7, 5131 (2013). https://doi.org/10.1021/nn400731g
  6. W. Shen, Z. Li, Y. Liu, 'Surface Chemical Functional Groups Modification of Porous Carbon' Recent Patents on Chemical Engineering, 1, 27 (2008). https://doi.org/10.2174/2211334710801010027
  7. J. S. Choe, H. H. Ahn, H. J. Nam, 'Comparison of Nutritional Composition in Korean Rices' J. Korean Soc. Food Sci Nutr, 31, 885 (2002). https://doi.org/10.3746/jkfn.2002.31.5.885
  8. K. J. Kang, K. Kim, S. K. Kim, 'Relationship between molecular structure of rice amylopectin and texture of cooked rice' Korean J. Food Sci and Technol, 27, 105 (1995).
  9. K. J. Kang, K. Kim, S. K. Kim, 'Structure and Properties of Starch on RIce Variety' J. Korean Soc Food Nutr 24, 684 (1995).
  10. C. yao, Y. Shin, L. Wang, C. F. Windisch, Jr., W. D. Samuels, B. W. Avey, C. Wang, W. M. Risen, Jr., and G. J. Exarhos, 'Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System' J. Phys. Chem. C, 111, 15141 (2007). https://doi.org/10.1021/jp074188l
  11. M. Zhang, H. Yang, Y. Liu, X. Sun, D. Zhang, and D. Xue, 'First identification of primary nanoparticles in the aggregation of HMF' Nanoscale Reaserch Letters, 7, 38 (2012). https://doi.org/10.1186/1556-276X-7-38
  12. J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, 'Nanospace engineering of KOH activated carbon' Nanotechnology, 23, 015401 (2012). https://doi.org/10.1088/0957-4484/23/1/015401
  13. W. Zhang, Z. Huang, G. Cao, F. Kang, Y. Yang, 'A novel mesoporous carbon with straight tunnel-like pore structure for high rate electrochemical capacitors' J. Power Sources, 204, 230 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.054
  14. H. J. Yoon, C. H. Lee, J. D. Lee, 'The electrochemical characteristics of EDLC with various activated carbons' J. of the Korean Oil Chemists' Soc., 28, 225 (2011).
  15. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, 'Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance' ACS Appl. Mater. Interfaces, 4, 5800 (2012). https://doi.org/10.1021/am302077c
  16. J. H. Kim, 'Fundamentals of Supercapacitor Technology' E. Chem Magazine, 3, 14, J. Korean Electrochem. Soc., (2012).
  17. A. Lasia, 'Electrochemical Impedance Spectroscopy and its applications', Modern Aspects of Electrochemistry, B. E. Conway, J. Bockris, and R. E. White, Edts., Kluwer Academic/Plenum Publishers, New York, 32, 143 (1999).
  18. J. H. Jang, S. M. Oh, 'Complex Capacitance Analysis of Impedance Data and its Applications' J. Korean Electrochem. Soc., 13, 223 (2010). https://doi.org/10.5229/JKES.2010.13.4.223

Cited by

  1. Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.119