• Title/Summary/Keyword: sphere bundle

Search Result 21, Processing Time 0.022 seconds

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Park, Jeong-Hyeong;Sekigawa, Kouei
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1255-1265
    • /
    • 2009
  • We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.

Spectra of Higher Spin Operators on the Sphere

  • Doojin Hong
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.105-122
    • /
    • 2023
  • We present explicit formulas for the spectra of higher spin operators on the subbundle of the bundle of spinor-valued trace free symmetric tensors that are annihilated by Clifford multiplication over the standard sphere in odd dimension. In the even dimensional case, we give the spectra of the square of such operators. The Dirac and Rarita-Schwinger operators are zero-form and one-form cases, respectively. We also give eigenvalue formulas for the conformally invariant differential operators of all odd orders on the subbundle of the bundle of spinor-valued forms that are annihilated by Clifford multiplication in both even and odd dimensions on the sphere.

THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

  • Cho, Jong Taek;Chun, Sun Hyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1715-1723
    • /
    • 2016
  • We study the characteristic Jacobi operator ${\ell}={\bar{R}({\cdot},{\xi}){\xi}$ (along the Reeb flow ${\xi}$) on the unit tangent sphere bundle $T_1M$ over a Riemannian manifold ($M^n$, g). We prove that if ${\ell}$ is pseudo-parallel, i.e., ${\bar{R}{\cdot}{\ell}=L{\mathcal{Q}}({\bar{g}},{\ell})$, by a non-positive function L, then M is locally flat. Moreover, when L is a constant and $n{\neq}16$, M is of constant curvature 0 or 1.

Eigen 1-forms of the laplacian and riemannian submersions

  • Park, Jeong-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.477-480
    • /
    • 1996
  • Let $\pi : Z \longrightarrow Y$ be a fiber bundle where Y and Z are compact Riemannian manifolds without boundary. We are primarily interested in the case where $\pi$ is a Riemannian submersion with minimal fibers; this is the case, for example, where Z is the sphere bundle of some vector bundle over Y or where Z is a principal bundle over Y.

  • PDF

A CERTAIN PROPERTY OF POLYNOMIALS AND THE CI-STABILITY OF TANGENT BUNDLE OVER PROJECTIVE SPACES

  • Tanaka, Ryuichi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.83-86
    • /
    • 2007
  • We determine the largest integer i such that $0 and the coefficient of $t^{i}$ is odd in the polynomial $(1+t+t^{2}+{\cdots}+t^{n})^{n+1}$. We apply this to prove that the co-index of the tangent bundle over $FP^{n}$ is stable if $2^{r}{\leq}n<2^{r}+\frac{1}{3}(2^{r}-2)$ for some integer r.