• Title, Summary, Keyword: speeded-up robust feature (SURF)

Search Result 54, Processing Time 0.032 seconds

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

A Method for Improving Object Recognition Using Pattern Recognition Filtering (패턴인식 필터링을 적용한 물체인식 성능 향상 기법)

  • Park, JinLyul;Lee, SeungGi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.122-129
    • /
    • 2016
  • There have been a lot of researches on object recognition in computer vision. The SURF(Speeded Up Robust Features) algorithm based on feature detection is faster and more accurate than others. However, this algorithm has a shortcoming of making an error due to feature point mismatching when extracting feature points. In order to increase a success rate of object recognition, we have created an object recognition system based on SURF and RANSAC(Random Sample Consensus) algorithm and proposed the pattern recognition filtering. We have also presented experiment results relating to enhanced the success rate of object recognition.

Discrete Multiwavelet-Based Video Watermarking Scheme Using SURF

  • Narkedamilly, Leelavathy;Evani, Venkateswara Prasad;Samayamantula, Srinivas Kumar
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.595-605
    • /
    • 2015
  • This paper proposes a robust, imperceptible block-based digital video watermarking algorithm that makes use of the Speeded Up Robust Feature (SURF) technique. The SURF technique is used to extract the most important features of a video. A discrete multiwavelet transform (DMWT) domain in conjunction with a discrete cosine transform is used for embedding a watermark into feature blocks. The watermark used is a binary image. The proposed algorithm is further improved for robustness by an error-correction code to protect the watermark against bit errors. The same watermark is embedded temporally for every set of frames of an input video to improve the decoded watermark correlation. Extensive experimental results demonstrate that the proposed DMWT domain video watermarking using SURF features is robust against common image processing attacks, motion JPEG2000 compression, frame averaging, and frame swapping attacks. The quality of a watermarked video under the proposed algorithm is high, demonstrating the imperceptibility of an embedded watermark.

SURF algorithm to improve Correspondence Point using Geometric Features (기하학적 특징을 이용한 SURF 알고리즘의 대응점 개선)

  • Kim, Ji-Hyun;Koo, Kyung-Mo;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.43-46
    • /
    • 2012
  • 컴퓨터 비전을 이용한 다양한 응용 분야에 있어서, 특징점을 이용한 응용 분야가 많이 이루어지고 있다. 그 중에 Global feature는 표현의 위험성과 부정확성으로 인해서 많이 사용되고 있지 않으며, Local feature를 이용한 연구가 주로 이루고 있다. 그 중에 SURF(Speeded-Up Robust Features) 알고리즘은 다수의 영상에서 같은 물리적 위치에 있는 동일한 특징점을 찾아서 매칭하는 방법으로 널리 알려진 특징점 매칭 알고리즘이다. 하지만 SURF 알고리즘을 이용하여 특징점을 매칭하여 정합 쌍을 구하였을 때 매칭되는 특징점들의 정확도가 떨어지는 단점이 있다. 본 논문에서는 특징점 매칭 알고리즘인 SURF를 사용하여 대응되는 특징점들을 들로네 삼각형의 기하학적 특징을 이용하여 정확도가 높은 특징점을 분류하여 SURF 알고리즘의 매칭되는 대응점들의 정확도를 높이는 방법을 제안한다.

  • PDF

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.

Stitcing for Panorama based on SURF and Multi-band Blending (SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭)

  • Luo, Juan;Shin, Sung-Sik;Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper suggests a panorama image stitching system which consists of an image matching algorithm: modified SURF (Speeded Up Robust Feature) and an image blending algorithm: multi-band blending. In this paper, first, Modified SURF is described and SURF is compared with SIFT (Scale Invariant Feature Transform), which also gives the reason why modified SURF is chosen instead of SIFT. Then, multi-band blending is described, Lastly, the structure of a panorama image stitching system is suggested and evaluated by experiments, which includes stitching quality test and time cost experiment. According to the experiments, the proposed system can make the stitching seam invisible and get a perfect panorama for large image data, In addition, it is faster than the sift based stitching system.

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA (PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선)

  • Kim, Onecue;Kang, Dong-Joong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.820-828
    • /
    • 2013
  • Extracting unique features from an image is a fundamental issue when making panorama images, acquiring stereo images, recognizing objects and analyzing images. Generally, the task to compare features to other images requires much computing time because some features are formed as a vector which has many elements. In this paper, we present a method that compares features after reducing the feature dimension extracted from an image using PCA(principal component analysis) and sorting the features in a linked list. SURF(speeded up robust features) is used to describe image features. When the dimension reduction method is applied, we can reduce the computing time without decreasing the matching accuracy. The proposed method is proved to be fast and robust in experiments.