• Title/Summary/Keyword: speed data

Search Result 8,918, Processing Time 0.036 seconds

Analysis of Low Altitude Wind Profile Data from Wind Lidar for Drone Aviation Safety (드론의 안전 비행을 위한 윈드라이다 저고도 바람 분석 방법 제시)

  • Kim, Je-Won;Ryu, Jung-Hee;Na, Seong-Jun;Seong, Seong-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.899-907
    • /
    • 2022
  • According to the Unmanned aircraft system Traffic Management (UTM), drones are permitted to fly up to 150m above ground, which is located in the atmospheric boundary layer where there is considerable wind fluctuation due to turbulence. Although it is difficult to predict when turbulence will occur drone aviation safety could be enhanced by having a better understanding of the characteristics of vertical profile of wind in the flight area. We used wind lidar (WIndMast 350M) to observe vertical profiles of wind at the test site for aviation meteorological observation equipment located near Incheon International Airport in July and September, 2022. In this study, we utilized the observed wind profile data to propose a technique for obtaining information that could help improve the drone aviation safety. The Fourier transform analysis is used to evaluate the temporal characteristics of the horizontal wind speed at various vertical levels up to 350m. We also examined the relative contribution of the variance of wind having scales of less than an hour, a crucial scale for drone flight, to the variance of wind having all scales at each vertical altitude for days with and without precipitation.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

A Study on the Application of Virtual Space Design Using the Blended Education Method - A La Carte Model Based on the Creation of Infographic - (블렌디드 교육방식을 활용한 가상공간 디자인 적용에 관한 연구 -알 라 카르테 모델 (A La Carte) 인포그래픽 가상공간 제작을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.279-284
    • /
    • 2022
  • As a study of the blended learning method on design education through the blended learning method, I would like to propose that more advanced learner-led customized design education is possible. Understanding in face-to-face classes and advantages in non-face-to-face classes can be supplemented in an appropriate way in remote classes. Advanced artificial intelligence and big data technology can provide personalized and subdivided learning materials and effective learning methods tailored to learners' levels and interests based on quantified data in design classes. In this paper, it was proposed to maximize the efficiency of the class by applying a method that exceeds the limitations of time and space through the proposal of the A La Carte model (A La Carte). It is a remote class that can be heard anytime, anywhere, and it is also possible to bridge the educational quality and educational gap provided to students living in underprivileged areas. As the goal of fostering creative convergence-type future talents, it is changing with a rapid technological development speed. It is necessary to adapt to the change in learning methods in line with this. An analysis of the infographic virtual space design and construction process through the A La Carte model (A La Carte) proposal was presented. Rather than simply acquiring knowledge, it is expected that knowledge can be sorted, distinguished, learned, and easily reborn with its own knowledge.

Text Classification Using Heterogeneous Knowledge Distillation

  • Yu, Yerin;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.29-41
    • /
    • 2022
  • Recently, with the development of deep learning technology, a variety of huge models with excellent performance have been devised by pre-training massive amounts of text data. However, in order for such a model to be applied to real-life services, the inference speed must be fast and the amount of computation must be low, so the technology for model compression is attracting attention. Knowledge distillation, a representative model compression, is attracting attention as it can be used in a variety of ways as a method of transferring the knowledge already learned by the teacher model to a relatively small-sized student model. However, knowledge distillation has a limitation in that it is difficult to solve problems with low similarity to previously learned data because only knowledge necessary for solving a given problem is learned in a teacher model and knowledge distillation to a student model is performed from the same point of view. Therefore, we propose a heterogeneous knowledge distillation method in which the teacher model learns a higher-level concept rather than the knowledge required for the task that the student model needs to solve, and the teacher model distills this knowledge to the student model. In addition, through classification experiments on about 18,000 documents, we confirmed that the heterogeneous knowledge distillation method showed superior performance in all aspects of learning efficiency and accuracy compared to the traditional knowledge distillation.

A Hybrid Blockchain-Based E-Voting System with BaaS (BaaS를 이용한 하이브리드 블록체인 기반 전자투표 시스템)

  • Kang Myung Joe;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.253-262
    • /
    • 2023
  • E-voting is a concept that includes actions such as kiosk voting at a designated place and internet voting at an unspecified place, and has emerged to alleviate the problem of consuming a lot of resources and costs when conducting offline voting. Using E-voting has many advantages over existing voting systems, such as increased efficiency in voting and ballot counting, reduced costs, increased voting rate, and reduced errors. However, centralized E-voting has not received attention in public elections and voting on corporate agendas because the results of voting cannot be trusted due to concerns about data forgery and modulation and hacking by others. In order to solve this problem, recently, by designing an E-voting system using blockchain, research has been actively conducted to supplement concepts lacking in existing E-voting, such as increasing the reliability of voting information and securing transparency. In this paper, we proposed an electronic voting system that introduced hybrid blockchain that uses public and private blockchains in convergence. A hybrid blockchain can solve the problem of slow transaction processing speed, expensive fee by using a private blockchain, and can supplement for the lack of transparency and data integrity of transactions through a public blockchain. In addition, the proposed system is implemented as BaaS to ensure the ease of type conversion and scalability of blockchain and to provide powerful computing power. BaaS is an abbreviation of Blockchain as a Service, which is one of the cloud computing technologies and means a service that provides a blockchain platform ans software through the internet. In this paper, in order to evaluate the feasibility, the proposed system and domestic and foreign electronic voting-related studies are compared and analyzed in terms of blockchain type, anonymity, verification process, smart contract, performance, and scalability.

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF

Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm (가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현)

  • Hyun Park;Jun-Mo Park;Yeon-Chul, Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • With the recent development of IT technology, research and interest in various biosignal measuring devices is increasing. As an aging society is in full swing, research on the elderly population using IT-related technologies is continuously developing. This study is about the development of life pattern detection and fall detection algorithm, which is one of the medical service areas for the elderly, who are rapidly developing as they enter a super-aged society. This study consisted of a system using a 3-axis accelerometer and an electrocardiogram sensor, collected data, and then analyzed the data. It was confirmed that behavioral patterns could be classified from the actual research results. In order to evaluate the usefulness of the human activity monitoring system implemented in this study, experiments were performed under various conditions, such as changes in posture and walking speed, and signal magnitude range and signal vector magnitude parameters reflecting the acceleration of gravity of the human body and the degree of human activity. was extracted. And the possibility of discrimination according to the condition of the subject was examined by these parameter values.

Evaluation of the Lateral Influence Range on Temporary Structures for a Train Operating at 80km/h (시속 80km/h의 열차 운행시 가시설 구조물에 미치는 수평영향범위 평가)

  • Jong-Chul Kim;Yeong-Bae Kim;Tae-Hyun Hwang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • In accordance with the urban development project, cases of constructing temporary wall structures for ground excavation in the vicinity of railway structures are increasing. In addition, the complaints about train vibration are also increasing from people living in large buildings newly built after installing the temporary wall structures. In order to solve this problem, a method for reducing train vibration is considered from the design stage of the building, and a vibration reduction system is installed on the structure when the building is newly constructed. However, the vibration reduction method established at the structure design stage can be determined through the results of field measurements or dynamic numerical analysis for a specific area, and there is a limit to evaluating whether the established vibration reduction method is appropriate due to the lack of objective research data. Therefore, in order to provide objective basic data when establishing a vibration reduction method, this study performed the dynamic numerical analysis for a operating train with a speed 80km/h by applying differently the depths of railway structures, the distances between railways and temporary wall structures, and ground conditions. It was found that the range of influence of a train operating at 80 km/h was within 4.5D of the lateral distance from the railway structure in the case of the condition where the temporary wall was installed.

Analysis of the Effectiveness of Tunnel Traffic Safety Information Service Using RADAR Data Based on Surrogate Safety Measures (레이더 검지기 자료를 활용한 SSM 기반 터널 교통안전정보 제공 서비스 효과분석)

  • Yongju Kim;Jaehyeon Lee;Sungyong Chung;Chungwon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.73-87
    • /
    • 2023
  • Furnishing traffic safety information can contribute to providing hazard warnings to drivers, thereby avoiding crashes. A smart road lighting platform that instantly recognizes road conditions using various sensors and provides appropriate traffic safety information has therefore been developed. This study analyzes the short-term traffic safety improvement effects of the smart road lighting's tunnel traffic safety information service using surrogate safety measures (SSM). Individual driving behavior was investigated by applying the vehicle trajectory data collected with RADAR in the Anin Avalanche 1 and 2 tunnel sections in Gangneung. Comparing accumulated speeding, speed variation, time-to-collision, and deceleration rate to avoid the crash before and after providing traffic safety information, all SSMs showed significant improvement, indicating that the tunnel traffic safety information service is beneficial in improving traffic safety. Analyzing potential crash risk in the subdivided tunnel and access road sections revealed that providing traffic safety information reduced the probability of traffic accidents in most segments. The results of this study will be valuable for analyzing the short-term quantitative effects of traffic safety information services.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.1-11
    • /
    • 2023
  • Breast cancer is the disease that affects women the most worldwide. Due to the development of computer technology, the efficiency of machine learning has increased, and thus plays an important role in cancer detection and diagnosis. Deep learning is a field of machine learning technology based on an artificial neural network, and its performance has been rapidly improved in recent years, and its application range is expanding. In this paper, we propose a DNN-SVM hybrid model that combines the structure of a deep neural network (DNN) based on transfer learning and a support vector machine (SVM) for breast cancer classification. The transfer learning-based proposed model is effective for small training data, has a fast learning speed, and can improve model performance by combining all the advantages of a single model, that is, DNN and SVM. To evaluate the performance of the proposed DNN-SVM Hybrid model, the performance test results with WOBC and WDBC breast cancer data provided by the UCI machine learning repository showed that the proposed model is superior to single models such as logistic regression, DNN, and SVM, and ensemble models such as random forest in various performance measures.