• Title/Summary/Keyword: spectrum state

Search Result 755, Processing Time 0.023 seconds

A split spectrum processing of noise-contaminated wave signals for damage identification

  • Miao, X.T.;Ye, Lin;Li, F.C.;Sun, X.W.;Peng, H.K.;Lu, Ye;Meng, Guang
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.253-269
    • /
    • 2012
  • A split spectrum processing (SSP) method is proposed to accurately determine the time-of-flight (ToF) of damage-scattered waves by comparing the instantaneous amplitude variation degree (IAVD) of a wave signal captured from a damage case with that from the benchmark. The fundamental symmetrical ($S_0$) mode in aluminum plates without and with a notch is assessed. The efficiency of the proposed SSP method and Hilbert transform in determining the ToF of damage-scattered $S_0$ mode is evaluated for damage identification when the wave signals are severely contaminated by noise. Broadband noise can overwhelm damage-scattered wave signals in the time domain, and the Hilbert transform is only competent for determining the ToF of damage-scattered $S_0$ mode in a noise-free condition. However, the calibrated IAVD of the captured wave signal is minimally affected by noise, and the proposed SSP method is capable of determining the ToF of damage-scattered $S_0$ mode accurately even though the captured wave signal is severely contaminated by broadband noise, leading to the successful identification of damage (within an error on the order of the damage size) using a triangulation algorithm.

Spectroscopic Analysis of Partially Folded State of Ubiquitin (유비퀴틴 단백질의 부분적으로 폴딩된 구조에 대한 분광학적 분석)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • Hydrophobic core variant of ubiquitin appeared to have partially folded structure at pH around 2. The intrinsic tryptophan fluorescence emission maximum of this ubiquitin variant at pH 2 showed slight blue shift compare to that of unfolded state, suggesting that some residual tertiary structures remain in this solvent condition. At the same solvent condition, this ubiquitin variant binds with hydrophobic dye, 8-anilinonaphthalene-1-sulfonic acid(AMS), which is known to bind to exposed hydrophobic surface. Furthermore, far-UV circular dichroic spectrum of this ubiquitin variant in the diminished pH was remarkably different from the far-UV CD spectrum of the native state or unfolded state. Based on the molar ellipticity at 220 nm, this ubiquitin variant at pH 2 appeared to have significant amount of secondary structures. All these observations suggest that this ubiquitin variant in the diminished solvent pH has loosely folded hydrophobic core with some secondary structures, which are key features of molten globule conformation. Since molten globule has long been considered as a protein folding intermediate, it is considered that this hydrophobic core variant ubiquitin will serve as a valuable model to study protein folding process.

Study on the Introduction of Spectrum Policy to Revitalize the Domestic Spectrum Sharing (국내 주파수 공동사용 활성화를 위한 정책 도입방안 연구)

  • Choi, Joo-Pyoung;Lee, Won-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.200-213
    • /
    • 2018
  • Herein, we survey the current state of the recent legal revision of the Citizens Broadband Radio Service, a type of city spectrum-sharing service used in the United States of America, and the introduction of spectrum sharing in the frequency ranging from 3.8~4.2 GHz, based on the United Kingdom framework for spectrum sharing. Specifically, the subjects of topical interest, including the radio station licensing of the spectrum-sharing service system face-to-face multitier user structure, regional frequency allocation, and applicable service types, are discussed. Furthermore, factors to be considered while selecting candidate channels for joint use are suggested, emphasizing their importance for introducing spectrum sharing in Korea and revitalizing the related industrial sectors. In addition, methods of introducing a radio station license system for spectrum sharing, techniques of introducing incentive auctions, and the types of services where spectrum sharing is applicable are discussed.

HMM-based Adaptive Frequency-Hopping Cognitive Radio System to Reduce Interference Time and to Improve Throughput

  • Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.475-490
    • /
    • 2010
  • Cognitive Radio is an advanced enabling technology for the efficient utilization of vacant spectrum due to its ability to sense the spectrum environment. It is important to determine accurate spectrum utilization of the primary system in a cognitive radio environment. In order to define the spectrum utilization state, many CR systems use what is known as the quiet period (QP) method. However, even when using a QP, interference can occur. This causes reduced system throughput and contrary to the basic condition of cognitive radio. In order to reduce the interference time, a frequency-hopping algorithm is proposed here. Additionally, to complement the loss of throughput in the FH, a HMM-based channel prediction algorithm and a channel allocation algorithm is proposed. Simulations were conducted while varying several parameters. The findings show that the proposed algorithm outperforms conventional channel allocation algorithms.

Vibronic Assignments of the $S_1 \rightarrow S_0$ Emission Spectrum of the Jet Cooled p-Fluorotoluene

  • 하영미;최익순;이상국
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.202-206
    • /
    • 1998
  • The p-fluorotoluene was vibronically excited in a jet with a buffer gas He in a corona excited supersonic expansion. The vibronic emission spectrum of the jet cooled p-fluorotoluene in the transition of S1 → S0 has been recorded with a Fourier transform spectrometer in the uv region. The spectrum observed was analyzed to obtain accurate vibrational frequencies in the ground electronic state by comparing with those reported previously. The origin of the low frequency sequence bands observed in this work was discussed. Also, the absence of significant intensity of hot band resulting from the excited vibrational states in the spectrum suggests extensive vibrational cooling in the source.

Transport Protocols in Cognitive Radio Networks: A Survey

  • Zhong, Xiaoxiong;Qin, Yang;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3711-3730
    • /
    • 2014
  • Cognitive radio networks (CRNs) have emerged as a promising solution to enhance spectrum utilization by using unused or less used spectrum in radio environments. The basic idea of CRNs is to allow secondary users (SUs) access to licensed spectrum, under the condition that the interference perceived by the primary users (PUs) is minimal. In CRNs, the channel availability is uncertainty due to the existence of PUs, resulting in intermittent communication. Transmission control protocol (TCP) performance may significantly degrade in such conditions. To address the challenges, some transport protocols have been proposed for reliable transmission in CRNs. In this paper we survey the state-of-the-art transport protocols for CRNs. We firstly highlight the unique aspects of CRNs, and describe the challenges of transport protocols in terms of PU behavior, spectrum sensing, spectrum changing and TCP mechanism itself over CRNs. Then, we provide a summary and comparison of existing transport protocols for CRNs. Finally, we discuss several open issues and research challenges. To the best of our knowledge, our work is the first survey on transport protocols for CRNs.

Distributed Coordination Protocol for Ad Hoc Cognitive Radio Networks

  • Kim, Mi-Ryeong;Yoo, Sang-Jo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2012
  • The exponential growth in wireless services has resulted in an overly crowded spectrum. The current state of spectrum allocation indicates that most usable frequencies have already been occupied. This makes one pessimistic about the feasibility of integrating emerging wireless services such as large-scale sensor networks into the existing communication infrastructure. Cognitive radio is an emerging dynamic spectrum access technology that can be used for flexibly and efficiently achieving open spectrum sharing. Cognitive radio is an intelligent wireless communication system that is aware of its radio environment and that is capable of adapting its operation to statistical variations of the radio frequency. In ad hoc cognitive radio networks, a common control channel (CCC) is usually used for supporting transmission coordination and spectrum-related information exchange. Determining a CCC in distributed networks is a challenging research issue because the spectrum availability at each ad hoc node is quite different and dynamic due to the interference between and coexistence of primary users. In this paper, we propose a novel CCC selection protocol that is implemented in a distributed way according to the appearance patterns of primary systems and connectivity among nodes. The proposed protocol minimizes the possibility of CCC disruption by primary user activities and maximizes node connectivity when the control channel is set up. It also facilitates adaptive recovery of the control channel when the primary user is detected on that channel.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Survey of Security Mechanisms with Direct Sequence Spread Spectrum Signals

  • Kang, Taeho;Li, Xiang;Yu, Chansu;Kim, Jong
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.187-197
    • /
    • 2013
  • Security has long been a challenging problem in wireless networks, mainly due to its broadcast nature of communication. This opens up simple yet effective measures to thwart useful communications between legitimate radios. Spread spectrum technologies, such as direct sequence spread spectrum (DSSS), have been developed as effective countermeasures against, for example, jamming attacks. This paper surveys previous research on securing a DSSS channel even further, using physical layer attributes-keyless DSSS mechanisms, and watermarked DSSS (WDSSS) schemes. The former has been motivated by the fact that it is still an open question to establish and share the secret spread sequence between the transmitter and the receiver without being noticed by adversaries. The basic idea of the latter is to exploit the redundancy inherent in DSSS's spreading process to embed watermark information. It can be considered a counter measure (authentication) for an intelligent attacker who obtains the spread sequence to generate fake messages. This paper also presents and evaluates an adaptive DSSS scheme that takes both jam resistance and communication efficiency into account.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.