• 제목/요약/키워드: spectroscopic methods

검색결과 636건 처리시간 0.025초

Spectroscopic Techniques for Nondestructive Detection of Fungi and Mycotoxins in Agricultural Materials: A Review

  • Min, Hyunjung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제40권1호
    • /
    • pp.67-77
    • /
    • 2015
  • Purpose: Fungal secondary metabolite (mycotoxin) contamination in foods can pose a serious threat to humans and animals. Spectroscopic techniques have proven to be potential alternative tools for early detection of mycotoxins. Thus, the aim of this review is to provide an overview of the current developments in nondestructive food safety testing techniques, particularly regarding fungal contamination testing in grains, focusing on the application of spectroscopic techniques to this problem. Methods: This review focuses on the use of spectroscopic techniques for the detection of fungi and mycotoxins in agricultural products as reported in the literature. It provides an overview of the characteristics of the main spectroscopic methods and reviews their applications in grain analysis. Results: It was found that spectroscopy has advantages over conventional methods used for fungal contamination detection, particularly when combined with chemometrics. These advantages include the rapidness and nondestructive nature of this approach. Conclusions: While spectroscopy offers many benefits for the detection of mycotoxins in agricultural products, a number of limitations exist, which must be overcome prior to widespread adoption of these techniques.

NEW ORBITAL PARAMETERS AND RADIAL VELOCITY CURVE ANALYSIS OF SPECTROSCOPIC BINARY STARS

  • Ghaderi, Kamal;Pirkhedri, Ali;Rostami, Touba;Khodamoradi, Salem;Fatahi, Hedayat
    • 천문학회지
    • /
    • 제45권1호
    • /
    • pp.1-6
    • /
    • 2012
  • We use a Probabilistic Neural Network (PNN) technique to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of five double-lined spectroscopic binary systems (i.e., EQ Tau, V376 And, V776 Cas, V2377 Oph and EE Cet), we find the corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by other groups via more traditional methods.

회전보상기를 이용한 분광타원기술에 있어서의 캘리브레이션 (Calibrations in rotating compensator spectroscopic ellipsometry)

  • An, Ilsin
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.256-259
    • /
    • 2001
  • Rotating-compensator type ellipsometer was developed for spectroscopic measurements. For accurate data reduction, the azimuths of transmission axises of polarizer and analyzer, and the angular position of the fast axis of compensator should be determined through calibration process. In this paper, we present various calibration methods.

  • PDF

이중 패브리-페로 간섭계에 대한 분광학적 분석방법 (Spectroscopic methods for the analysis of tandem fabry-perot interferometer)

  • 이석목
    • 한국광학회지
    • /
    • 제5권2호
    • /
    • pp.231-237
    • /
    • 1994
  • 이중 패브리-페로 간섭계의 구조분석에 대한 분광학적인 방법을 제시하였다. 수 십 GHz의 차이가 있는 두 가지의 진동수의 광선을 이용하여 각 간섭계의 공동거리와 간섭계간의 필요조건에 대한 정밀도 및 측정방법 등에 대하여 이론적으로 조사하였으며 그 결과를 실험으로 확인하였다.

  • PDF

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.

DATA REDUCTION OF AKARI/IRC SPECTROSCOPIC OBSERVATIONS

  • Usui, Fumihiko;Onaka, Takashi;AKARI/IRC team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.41-43
    • /
    • 2017
  • AKARI performed about 10,000 spectroscopic observations with the Infrared Camera (IRC) during its mission phase. These IRC observations provide unique spectroscopic data at near- and mid-infrared wavelengths for studies of the next few decades because of its high sensitivity and unique wavelength coverage. In this paper, we present the current status of the activity for improving the IRC spectroscopic data reduction process, including the toolkit and related data packages, and also discuss the goal of this project.

Spectroscopic Techniques for Nondestructive Quality Inspection of Pharmaceutical Products: A Review

  • Kandpal, Lalit Mohan;Park, Eunsoo;Tewari, Jagdish;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.394-408
    • /
    • 2015
  • Spectroscopy is an emerging technology for the quality assessment of pharmaceutical samples, from tablet manufacturing to final quality assurance. The traditional methods for the quality management of pharmaceutical tablets are time consuming and destructive, while spectroscopic techniques allow rapid analysis in a non-destructive manner. The advantage of spectroscopy is that it collects both spatial and spectral information (called hyperspectral imaging), which is useful for the chemical imaging of pharmaceutical samples. These chemical images provide both qualitative and quantitative information on tablet samples. In the pharmaceutics, spectroscopic techniques are used for a variety of applications, such as analysis of the homogeneity of powder samples as well as determination of particle size, product composition, and the concentration, uniformity, and distribution of the active pharmaceutical ingredient in solid tablets. This review paper presents an introduction to the applications of various spectroscopic techniques such as hyperspectroscopy and vibrational spectroscopies (Raman spectroscopy, FT-NIR, and IR spectroscopy) for the quality and safety assessment of pharmaceutical solid dosage forms. In addition, various chemometric techniques that are highly essential for analyzing the spectroscopic data of pharmaceutical samples are also reviewed.

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

Quantum Mechanical Calculation of Spectroscopic Constants of ClO and $CIO^+$

  • Hae-Sun Song;Eun-Mo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.476-480
    • /
    • 1993
  • The ab initio calculations were performed on ClO and $ClO^+$ using the configuration interaction and M${\phi}$ller-Plesset methods of several different levels of approximation. Three different basis sets, 66 contracted Gaussian-type orbitals,6-31$G^*$ and 6-311$G^*$, were employed in this calculation. The results of calculation were compared with the experimental values of ClO. The values from the calculation with 66cGTO basis set gave excellent agreement with the experimental values. The spectroscopic constants of $ClO^+$ were also predicted.