• Title/Summary/Keyword: spectral representation

Search Result 94, Processing Time 0.026 seconds

A new AR power spectral estimation technique using the Karhunen-Loeve Transform (KLT를 이용한 AR 스펙트럼 추정기법에 관한 연구)

  • 공성곤;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.134-136
    • /
    • 1986
  • In this paper, a new power spectral estimation technique is presented. At first, by transforming the original data with the Karhunen-Loeve Transform(KLT), we can reduce the amount of the redundant information. Next, by modeling the transformed data by means of the autoregressive(AR) model and then applying the least-squares parameter estimation algorithm to this model, even more accurate spectrum estimates can be obtained. The KLT is the optimum transform for signal representation with respect to the mean-square error criterion. And the least-squares method is used to overcome the inherent shortcomings of popular burg algorithm.

  • PDF

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.

Simulation of Multi-Variate Random Processes (다변수 확률과정의 시뮬레이션)

  • ;M. Shinozuka
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.24-30
    • /
    • 1990
  • An improved algorithm for simulation of multi-variate random processes has been presented. It is based on the spectral representation method. The conventional methods give sample time histories which satisfy the target spectral density matrix only in the sense of ensemble average. However, the present method can generate sample functions which satisfy the target spectra in the ergodic sense. Example analysis is given for the simulation of earthquake accelerations with three components.

  • PDF

A Multiresolution Wavelet Scattering Analysis of Microstrip Patch antennas (마이크로스트립 패치 안테나의 다중 분해능 웨이블릿 산란해석법)

  • 강병용;주세훈;빈영부;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.640-647
    • /
    • 1998
  • Microstrip patch antennas are analyzed by a multiresolution wavelet method. The spectral Green's dyad of the structure is obtained and its joint spatial-spectral domain representations are presented. Based on the joint spatial-spectral domain representation, we show that the spectral-domain wavelets are useful in the analysis of this problem. We obtain the matrix equations of the integral equations of this Green's dyad by using the method of moment(MoM), and efficiently solve the problem using the spectral domain wavelet transform concepts in conjuction with the conjugate gradient method. The results for a single-layered square patch are compared with those of conventional MoM and CG-FFT.

  • PDF

EISENSTEIN SERIES WITH NON-UNITARY TWISTS

  • Deitmar, Anton;Monheim, Frank
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.507-530
    • /
    • 2018
  • It is shown that for a non-unitary twist of a Fuchsian group, which is unitary at the cusps, Eisenstein series converge in some half-plane. It is shown that invariant integral operators provide a spectral decomposition of the space of cusp forms and that Eisenstein series admit a meromorphic continuation.

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

On the second order property of elliptical multivariate regular variation

  • Moosup Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.459-466
    • /
    • 2024
  • Multivariate regular variation is a popular framework of multivariate extreme value analysis. However, a suitable parametric model needs to be introduced for efficient estimation of its spectral measure. In such a view, elliptical distributions have been employed for deriving such models. On the other hand, the second order behavior of multivariate regular variation has to be specified for investigating the property of the estimator. This paper derives such a behavior by imposing a widely adopted second order regular variation condition on the representation of elliptical distributions. As result, the second order variation for the convergence to spectral measure is characterized by a signed measure with a regular varying index. Moreover, it leads to the asymptotic bias of the estimator. For demonstration, multivariate t-distribution is considered.

A novel hybrid method for robust infrared target detection

  • Wang, Xin;Xu, Lingling;Zhang, Yuzhen;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5006-5022
    • /
    • 2017
  • Effect and robust detection of targets in infrared images has crucial meaning for many applications, such as infrared guidance, early warning, and video surveillance. However, it is not an easy task due to the special characteristics of the infrared images, in which the background clutters are severe and the targets are weak. The recent literature demonstrates that sparse representation can help handle the detection problem, however, the detection performance should be improved. To this end, in this text, a hybrid method based on local sparse representation and contrast is proposed, which can effectively and robustly detect the infrared targets. First, a residual image is calculated based on local sparse representation for the original image, in which the target can be effectively highlighted. Then, a local contrast based method is adopted to compute the target prediction image, in which the background clutters can be highly suppressed. Subsequently, the residual image and the target prediction image are combined together adaptively so as to accurately and robustly locate the targets. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than other existing alternatives.

Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection

  • Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.210-220
    • /
    • 2020
  • Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.