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Abstract
Multivariate regular variation is a popular framework of multivariate extreme value analysis. However, a

suitable parametric model needs to be introduced for efficient estimation of its spectral measure. In such a
view, elliptical distributions have been employed for deriving such models. On the other hand, the second order
behavior of multivariate regular variation has to be specified for investigating the property of the estimator. This
paper derives such a behavior by imposing a widely adopted second order regular variation condition on the
representation of elliptical distributions. As result, the second order variation for the convergence to spectral
measure is characterized by a signed measure with a regular varying index. Moreover, it leads to the asymptotic
bias of the estimator. For demonstration, multivariate t-distribution is considered.

Keywords: multivariate regular variation, the second order behavior, spectral measure, elliptical
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1. Introduction

In diverse fields such as finance, meteorological hydrorisk management, and, internet traffic operation,
it is a prominent issue to model multivariate extreme events. Multivariate regular variation is a popular
framework for multivariate extreme value analysis (cf. Cai et al., 2011; Weller and Cooly, 2014; Li
and Hua, 2015; Einmahl et al., 2020). It describes the behavior of multivariate extremes in terms of
their radii and directions (cf. Resnick, 2008): The directional behavior is specified by a probability
measure on a measurable space of unit vectors, which is called spectral measure. Meanwhile the
radius obeys a univariate regular variation, and furthermore the radius and direction are asymptotically
independent as the former gets large. However, for efficient estimation, it is crucially required to
introduce a suitable model for the spectral measure which itself has no parameter of finite dimension.
In such a view, elliptical distributions have received much attention since they not only constitute a
subclass of multivariate regular variation but also provide a tractable parametric model for spectral
measure and tail dependence (cf. Hult and Lindskog, 2002; Klüppelberg et al., 2007; Joe and Li,
2019).

Kim (2021) derived a density function of the spectral measure of elliptical distributions and then
proposed a maximum likelihood estimator based on it. However, for investigating the property of the
resulting estimator, we need to specify how accurately the directional behavior at extreme level in
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finite sample is described by the spectral measure. This paper mainly focuses on the second order
property of convergence to spectral measure for the class of elliptical distributions: Let { ft(x) : t > 0},
and f (x) be real valued functions defined on a space X such that ft(x) → f (x) as t → 0 for each
x ∈ X. In this case, the second order property of the convergence indicates the behavior characterized
by γ > 0 and a real valued function g(x) such that

ft(x) − f (x) = tγg(x) + tγo(1), as t → 0.

By imposing a widely adopted second order (univariate) regular variation condition on the representa-
tion of elliptical distributions (cf. Hall, 1982; Hult and Lindskog, 2002), this paper derives the second
order behaviors with respect to radii and directions of the multivariate extremes.

The remainder of this paper is organized as follows: Section 2 presents some preliminary defini-
tions and theorem, and briefly reviews the second order property of univariate cases; Section 3 deals
with the second order property of elliptical multivariate regular variation.

2. Preliminary

2.1. Elliptical multivariate regular variation

This section provides the preliminary definitions and theorem. First, it is necessary to clarify the
topological space on which the spectral measure is defined. Let

Sd−1 :=
{
s = (s1, . . . , sd)′ ∈ Rd : s2

1 + · · · + s2
d = 1

}
denote the unit sphere in d-dimensional space for a positive integer d ≥ 2. Sd−1 is equipped with the
metric that takes |s1 − s2| as the distance between s1 and s2 in Sd−1, where | · | indicates the Euclidean
norm. The induced topology generates a Borel σ-field on Sd−1, which is denoted by Sd−1 hereafter.

Let X be a d-dimensional random vector, and R = |X| and S = X/R represent the radius and
direction of X. Then, R and S are positive and Sd−1-valued random variables, respectively. X is said
to have multivariate regularly varying tail if there exist α > 0 and a probability Borel measure Λ on
Sd−1 such that for x > 0 and A ∈ Sd−1 with Λ(∂A) = 0,

lim
t→0

P(R > x/t,S ∈ A)
P(R > 1/t)

= x−αΛ(A) (2.1)

(cf. Resnick, 2008). Taking A = Sd−1, the above equation reduces to

lim
t→0

P(R > x/t)
P(R > 1/t)

= x−α, for x > 0. (2.2)

i.e., x 7→ P(R > x) is (univariate) regularly varying with exponent −α as x → ∞ (Bingham et
al., 1987). It means that the conditional distribution of t|X| given t|X| > 1 converges to a Pareto
distribution as t → 0. Meanwhile, if x = 1 in (2.1), then it is

lim
t→0

P(S ∈ A | R > 1/t) = Λ(A), (2.3)

viz, the conditional distribution of S given t|X| > 1 approximates to Λ as t → 0. α is called the tail
exponent or tail index, while Λ is done the spectral measure. Furthermore, it follows from (2.1)–(2.3)
that asymptotically R and S are of conditional independence given t|X| > 1 as t → 0. These features
give rise to a simulation method of multivariate extremes (Kim, 2022).
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This study concentrates on the tail behavior characterized by a non-singular heavy-tailed elliptical
distribution. For a comprehensive overview of elliptical distributions, refer to Hult and Lindskog
(2002). Let Z = (Z1, . . . ,Zd)′, where Z1, . . . ,Zd are independent standard normal random variables.
Then W := Z/|Z| is uniformly distributed on Sd−1. In particular, if

X = VΣ
1
2 W, (2.4)

where Σ is a symmetric positive definite matrix, V is a positive random variable with a regularly
varying tail of tail exponent α and independent of W, then, according to Theorem 3.1 of Hult and
Lindskog (2002), X follows an elliptical distribution. Moreover, it exhibits a multivariate regularly
varying tail, and its spectral measure can be readily proven to be

Λ(A) =
E{|Σ1/2W|αI(Σ1/2W/|Σ1/2W| ∈ A)}

E{|Σ1/2W|α}
for A ∈ Sd−1. (2.5)

Define µ(A) := P(Z/|Z| ∈ A) for A ∈ Sd−1. Then, Kim (2021) shows that Λ in (2.5) has a density
function with respect to µ which of form is presented in the following theorem:

Theorem 1. Let

λ(s) =

(
s′Σ−1s

)− α+d
2

C(Σ, α)
, s ∈ Sd−1, with C(Σ, α) =

∫
s∈Sd−1

(
s′Σ−1s

)− α+d
2 dµ(s). (2.6)

Then, we have

Λ(A) =

∫
s∈A

λ(s)dµ(s), for A ∈ Sd−1. (2.7)

This theorem is related to the limit Λ in (2.3), which can be readily applied to the estimation (cf. Kim,
2021). However, to investigate the asymptotic property of the resulting estimator, the second order
behaviors of (2.2)–(2.3) have to be specified. The next section will deal with it.

2.2. The second order behavior of univariate regular variation

Before dealing with a second order behavior of multivariate regular variation, this subsection briefly
reviews the univariate case (2.2) with respect to α-estimation. Let R1, . . . ,Rn be a random sample of
R. For estimating α,

Hn =
1
k

n∑
i=1

(
log Ri − log R(k+1)

)
+

is popularly employed, where k < n is a positive integer and R(k+1) indicates the (k + 1)th largest value
in R1, . . . ,Rn (cf. Hill, 1975; Hsing, 1991). Assuming that k := kn satisfies k → ∞ and k/n → 0 as
n→ ∞, Hn converges in probability to 1/α as n→ ∞. For establishing a further asymptotic property,
we need to impose a more stringent condition on (2.2) which is called second order regular variation:
For instance, letting L(x) := xαP(R > x), x > 0, we assume that there exist γ > 0, c1 > 0, and, c2 ∈ R
such that

L(x) = c1
{
1 + c2x−γ + x−γo(1)

}
as x→ ∞ (2.8)
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(cf. Hall, 1982). If
√

k(k/n)γ/α → M as n→ ∞ for some M ≥ 0, we then have

√
k
(
Hn −

1
α

)
⇒

Z
α

+
γc−γ/α1 c2M
α(α + γ)

as n→ ∞,

where Z is a standard normal variable and⇒ denotes ‘convergence in distribution’ (cf. Hsing, 1991).
(2.8) is a special and prominent case of

L(x/t)
L(1/t)

− 1 = tγγc2
x−γ − 1
γ

+ tγo(1) as t → 0, for x > 0,

which is the second order property of limt→0 L(x/t)/L(1/t) = 1 for each x > 0.

3. Main result

For investigating the asymptotic property of the estimator of Σ in (2.4), we need to explore the second
order behavior of (2.3) (see Remark 1). Let X = VΣ1/2W be the random vector in (2.4). Moreover, it
is assumed that there exist α > 0, γ > 0, a1 > 0, and a2 ∈ R, such that

F̄V (x) := P(V > x) = a1x−α{1 + a2x−γ + o(x−γ)} as x→ ∞, (3.1)

(cf. (2.8)). Let

Λt( · ) := P(S ∈ · | R > 1/t), for t > 0.

Under (3.1), we are going to derive the behavior of Λt( · ) − Λ( · ) as t → 0. Let

ρ = E
{
|Σ1/2W|α+γ

}
/E

{
|Σ1/2W|α

}
, c1 = a1E

{
|Σ1/2W|α

}
, c2 = a2ρ,

Λ(γ)(A) :=
E{|Σ1/2W|α+γIA}

E{|Σ1/2W|α+γ}
with IA = I(Σ

1
2 W/ | Σ

1
2 W |∈ A) for A ∈ Sd−1,

and

Γ(A) := a2ρ
{
Λ(γ)(A) − Λ(A)

}
for A ∈ Sd−1.

Theorem 2. Assume that Σ is a symmetric positive definite matrix and (3.1) holds. Then,

(i) P(|X| > 1/t) = c1tα(1 + c2tγ + o(tγ)) as t → 0, i.e., (2.8) holds;

(ii) for each A ∈ Sd−1, Λt(A) − Λ(A) = tγΓ(A) + tγo(1) as t → 0, where the o(1)-term is uniformly
negligible in A ∈ Sd−1.

Proof: We first verify (i). Since V is independent of W and we have |Σ1/2W| > 0 with probability 1
due to positive definiteness of Σ, (2.4) implies that for A ∈ Sd−1,

P(|X| > 1/t, X/|X| ∈ A) = P
(
|Σ1/2W|V > 1/t,Σ1/2W/|Σ1/2W| ∈ A

)
= E

(
I(|Σ1/2W|V > 1/t)IA

)
= E

{
E

(
I(|Σ1/2W|V > 1/t)IA

∣∣∣W)}
= E

{
P
(

V >
1

t|Σ1/2W|

∣∣∣∣∣W)
IA

}
= E

{
F̄V

(
1

t|Σ1/2W|

)
IA

}
.
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Moreover, since there exists c > 1 such that almost surely 1/c < |Σ1/2W| < c due to positive definite-
ness of Σ, (3.1) implies that

F̄V (1/(t|Σ1/2W|))
F̄V (1/t)

=
∣∣∣Σ1/2W

∣∣∣α 1 + a2tγ|Σ1/2W|γ + tγo(1)
1 + a2tγ + tγo(1)

=
∣∣∣Σ1/2W

∣∣∣α [
1 + a2tγ

(∣∣∣Σ1/2W
∣∣∣γ − 1

)
+ tγo(1)

]
as t → 0,

where the o(1)-terms are all bounded by a constant for sufficiently small t > 0. Thus, applying
bounded convergence theorem we have

P(|X| > 1/t, X/|X| ∈ A)
P(V > 1/t)

=
E

{
F̄V (1/(t|Σ1/2W|))IA

}
F̄V (1/t)

= E
{

F̄V (1/(t|Σ1/2W|))
F̄V (1/t)

IA

}
(3.2)

= E
{∣∣∣Σ1/2W

∣∣∣α [
1 + a2tγ

(∣∣∣Σ1/2W
∣∣∣γ − 1

)
+ tγo(1)

]
IA

}
= E

{∣∣∣Σ1/2W
∣∣∣α IA

}
+ tγE

{
a2

(∣∣∣Σ1/2W
∣∣∣α+γ
−

∣∣∣Σ1/2W
∣∣∣α) IA

}
+ tγo(1)

= E
{∣∣∣Σ1/2W

∣∣∣α IA

}
+ tγh(A) + tγo(1) as t → 0,

where h(A) = a2E{(|Σ1/2W|α+γ − |Σ1/2W|α)IA} is a signed Borel measure on Sd−1 and the o(1)-terms
are uniformly negligible for A ∈ Sd−1. Taking A = Sd−1, we have that as t → 0,

P (|X| > 1/t) = P(V > 1/t)
[
E

{∣∣∣Σ1/2W
∣∣∣α} + tγh

(
Sd−1

)
+ tγo(1)

]
= a1E

{∣∣∣Σ1/2W
∣∣∣α} tα (1 + a2tγ + tγo(1)) (1 + tγa2(ρ − 1) + tγo(1))

= a1E
{∣∣∣Σ1/2W

∣∣∣α} tα (1 + tγa2ρ + tγo(1)) = c1tα (1 + c2tγ + tγo(1)) ,

which asserts (i).
Next, we verify (ii). From (3.2), it follows that as t → 0,

Λt(A) = P (X/|X| ∈ A | |X| > 1/t) =
P(|Σ1/2W|V > 1/t,Σ1/2W/|Σ1/2W| ∈ A)

P(|Σ1/2W|V > 1/t)

=
P(|Σ1/2W|V > 1/t,Σ1/2W/|Σ1/2W| ∈ A)/P(V > 1/t)

P(|Σ1/2W|V > 1/t)/P(V > 1/t)

=
E{|Σ1/2W|αIA} + tγh(A) + tγo(1)
E{|Σ1/2W|α} + tγh(Sd−1) + tγo(1)

,

where o(1)-terms are uniformly negligible in A ∈ Sd−1. Moreover, by applying mean value theorem
we have that as t → 0

1
E{|Σ1/2W|α} + tγh(Sd−1) + tγo(1)

=
1

E
{
|Σ1/2W|α

} − tγ
h(Sd−1)(

E
{
|Σ1/2W|α

})2 + tγo(1).

Thus, Λt(A) is equal to

E{|Σ1/2W|αIA}

E
{
|Σ1/2W|α

} + tγ
 h(A)
E

{
|Σ1/2W|α

} − h(Sd−1)E{|Σ1/2W|αIA}(
E{|Σ1/2W|α}

)2

 + tγo(1), (3.3)
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as t → 0, where o(1)-term is uniformly negligible in A ∈ Sd−1. Moreover, we have that for every
A ∈ Sd−1, the leading term in (3.3) is Λ(A) by (2.5) and

h(A)
E{|Σ1/2W|α}

−
h(Sd−1)E{|Σ1/2W|αIA}(

E{|Σ1/2W|α}
)2 = a2

{
ρΛ(γ)(A) − Λ(A) − (ρ − 1)Λ(A)

}
= a2ρ

{
Λ(γ)(A) − Λ(A)

}
= Γ(A).

This proves (ii). 2

Theorem 2 is a strong result. Actually, we are satisfied with the second behavior of Λt(A) − Λ(A) as
t → 0 while A runs over a subclass of Sd−1 rather than the entire. For bounded measurable function
f (s) defined on Sd−1 with

∫
s∈Sd−1 f (s)dΛ(s) = 0, let

A f (y) = {s ∈ Sd−1 : f (s) > y} and G f (y) = Γ(A f (y)) for y ∈ R.

The following corollary is readily established.

Corollary 1. Under the same conditions of Theorem 2, we have the followings:

(i) For bounded measurable function f (s) defined on Sd−1,

Λt

(
A f (y)

)
− Λ

(
A f (y)

)
= tγG f (y) + tγo(1) as t → 0,

where the o(1)-term is uniformly negligible in y ∈ R;

(ii) Moreover, if
∫

s∈Sd−1 f (s)dΛ(s) = 0, then,
∫ ∞
−∞

G f (y)dy = a2ρ
∫

s∈Sd−1 f (s)dΛ(γ)(s).

Proof: Since (i) is readily established by (ii) of Theorem 2, it suffices to verify (ii). Note that G f (y) is
integrable since it is bounded and G f (y) vanishes outside a compact interval due to the boundedness
of f (s). Thus, we have ∫ ∞

−∞

G f (y)dy = a2ρ

∫ ∞

−∞

{
Λ(γ)

(
A f (y)

)
− Λ

(
A f (y)

)}
dy.

Moreover, letting Ac
f (y) = Sd−1\A f (y) = {s ∈ Sd−1 : f (s) ≤ y}, we have∫ ∞

−∞

{
Λ(γ)

(
A f (y)

)
− Λ

(
A f (y)

)}
dy

=

∫ ∞

0

{
Λ(γ)

(
A f (y)

)
− Λ

(
A f (y)

)}
dy +

∫ 0

−∞

{
Λ(γ)

(
A f (y)

)
− Λ

(
A f (y)

)}
dy

=

∫ ∞

0

{
Λ(γ)

(
A f (y)

)
− Λ

(
A f (y)

)}
dy +

∫ 0

−∞

{
Λ

(
Ac

f (y)
)
− Λ(γ)

(
Ac

f (y)
)}

dy

=

∫ ∞

0
Λ(γ)

(
A f (y)

)
dy −

∫ 0

−∞

Λ(γ)

(
Ac

f (y)
)

dy −
[∫ ∞

0
Λ

(
A f (y)

)
dy −

∫ 0

−∞

Λ
(
Ac

f (y)
)

dy
]

=

∫
s∈Sd−1

f (s)dΛ(γ)(s),

where the last equation holds due to the fact that
∫

s∈Sd−1 f (s)dΛ(s) = 0. This completes the proof. 2
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Remark 1. The typical choice of f in Corollary 1 is the partial derivatives of log λ(s) with respect
to parameters representing Σ and α. Investigating the asymptotic property of Σ-estimator, we en-
counter the integral

∫
s∈Sd−1 f (s)dΛt(s) for t > 0, which represents the expected value of score function.

Furthermore,

lim
t→0

t−γ
(∫

s∈Sd−1
f (s)dΛt(s) −

∫
s∈Sd−1

f (s)dΛ(s)
)

is related to the bias. According to Corollary 1, the limit is a2ρ
∫

s∈Sd−1 f (s)dΛ(γ)(s) under (2.4) and
(3.1).

Remark 2. An example related to Theorem 2 is multivariate t-distribution: let Z = (Z1, . . . ,Zd)′,
where Z1, . . . ,Zd are independent standard normal random variables, Σ be a positive definite and
symmetric d × d matrix, and U follow χ2-distribution with degree of freedom ν > 0. Then, if Z and
U are independent, then, Z/|Z| is independent of |Z|/

√
U/ν and thus

Σ1/2Z
√

U/ν
=
|Z|
√

U/ν
Σ1/2 Z
|Z|
,

satisfies (2.4) with V = |Z|/
√

U/ν. Moreover, V2 follows an F-distribution with 1 and ν degrees of
freedom whose a probability density function is

x 7→
x−1/2(1 + x/ν)−(1+ν)/2

ν1/2Beta(1/2, ν/2)
(x > 0)

=
1

ν(2+ν)/2Beta(1/2, ν/2)
x−(2+ν)/2

{
1 −

ν(1 + ν)
2

1
x

+
o(1)

x

}
as x→ ∞,

where Beta indicates the beta function. By integrating the above function we can check that (3.1)
holds with

α = ν, a1 =
2ν−(4+ν)/2

Beta(1/2, ν/2)
, a2 =

ν2(1 + ν)
2(2 + ν)

, γ = 2.
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