• Title/Summary/Keyword: spectral imaging

Search Result 393, Processing Time 0.026 seconds

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

FUV IMAGING SPECTROSCOPIC OBSERVATIONS OF INTERSTELLAR MEDIUM WITH FIMS

  • SEON KWANG-IL;HAN WONYONG;LEE DAE-HEE;NAM UK-WON;PARK JANG-HYUN;YUK IN-SOO;JIN HO;MIN KYUNG WOOK;RYU KWANG-SUN;EDELSTEIN JERRY;KORPELA ERIC
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.69-72
    • /
    • 2005
  • The FIMS (Far-ultraviolet IMaging Spectrograph; also known as SPEAR, Spectroscopy of Plasma Evolution from Astrophysical Radiation) is the primary payload of the STSAT-1, the first Korean science satellite, which was launched in September, 2003. The FIMS performs spectral imaging of diffuse far-ultraviolet emission with the unprecedented wide field of view and the relatively good spectral resolution. We present far-ultraviolet spectral observations of highly ionized interstellar medium including supernova remnants, superbubbles, soft X-ray shadows, and the molecular hydrogen fluorescent emission lines. The FIMS has detected He II, C III, 0 III, O IV, Si IV, O VI, and $H_2$ fluorescent emission lines. The emission lines arise in shocked or thermally heated and in photo-ionized gases. We present an overview of the FIMS instrument and its initial observational results.

Development of Pre-Clinical Imaging System Using Hyper Spectral Imaging Technology (Hyper spectral imaging 기법을 이용한 전임상 영상장비에 대한 연구)

  • Lee, Kyeong-Hee;Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.140-141
    • /
    • 2007
  • 본 연구에서는 고분해능 및 고감도화된 시스템 개발을 위하여 AOTF를 이용하여 하이퍼스펙트럼 영상기법을 활용한 전임상 영상장비에 대한 연구를 수행하였다. 제작된 고감도 하이퍼스펙트럼 분자영상 시스템의 생물학적 적용을 위하여, AOTF의 파장 또는 진동수를 변화시키면서 GFP가 발현된 HEK 293 세포의 이미지를 촬영하였다. 또한, 제작된 실험 대상물 이미지화 시스템을 이용해서 실험용 쥐의 이미지를 촬영하였다. 실험용 쥐를 크세논 아크램프 사용 전 후 이미지를 촬영한 결과 크세논 아크 램프 사용 후에는 청색의 선명한 영상을 얻을 수 있었다.

  • PDF

Measurement of Thin Film Thickness of Patterned Samples Using Spectral Imaging Ellipsometry (분광결상 타원계측법을 이용한 패턴이 형성된 나노박막의 두께측정)

  • 제갈원;조용재;조현모;김현종;이윤우;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.15-21
    • /
    • 2004
  • 반도체 제조산업과 나노, 바이오 산업의 비약적 발전에 따라 게이트 산화막(gate oxide)과 같이 반도체 제조공정에서 사용되는 유전체 박막(dielectric film)의 두께는 수 $\mu\textrm{m}$에서 수 nm 에 이르기까지 다양할 뿐 아니라 얇아지고 있으며, 또한 이러한 박막들이 다층으로 복잡하게 적층된 다층 박막의 응용이 높아지는 추세이다. 따라서, 반도체 및 광통신 소자, 발광소자, 바이오 칩 어레이 등과 같은 나노박막을 이용하는 산업에서는 박막의 두께 측정을 더욱 정확하고, 보다 빠르며 효율적으로 측정할 수 있는 박막 두께 측정용 계측기가 요구된다.(중략)

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

CAPABILITY OF THE FAST IMAGING SOLAR SPECTROGRAPH ON NST/BBSO FOR OBSERVING FILAMENTS/PROMINENCES AT THE SPECTRAL LINES Hα, Ca II 8542, AND Ca II K

  • Ahn, Kwang-Su;Chae, Jong-Chul;Park, Hyung-Min;Nah, Jak-Young;Park, Young-Deuk;Jang, Bi-Ho;Moon, Yong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.39-47
    • /
    • 2008
  • Spectral line profiles of filaments/prominences to be observed by the Fast Imaging Solar Spectrograph (FISS) are studied. The main spectral lines of interests are $H{\alpha}$, Ca II 8542, and Ca II K. FISS has a high spectral resolving power of $2{\times}10^5$, and supports simultaneous dual-band recording. This instrument will be installed at the 1.6m New Solar Telescope (NST) of Big Bear Solar Observatory, which has a high spatial resolution of 0.065" at 500nm. Adopting the cloud model of radiative transfer and using the model parameters inferred from pre-existing observations, we have simulated a set of spectral profiles of the lines that are emitted by a filament on the disk or a prominence at the limb. Taking into account the parameters of the instrument, we have estimated the photon count to be recorded by the CCD cameras, the signal-to-noise ratios, and so on. We have also found that FISS is suitable for the study of multi-velocity threads in filaments if the spectral profiles of Ca II lines are recorded together with $H{\alpha}$ lines.

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

The Design of MSC(Multi-Spectral Camera) System Operation

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Paik, Hong-Yul;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.825-827
    • /
    • 2003
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/storage. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the architecture and function of MSC hardware including electrical interface and the operation concept which have been established based on the mission requirements are described. And the design and the preparation of MSC system operation are analyzed and discussed.

  • PDF

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.