DOI QR코드

DOI QR Code

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J. (Computational Optics Group, University of Tsukuba) ;
  • Makita, Shuichi (Computational Optics Group, University of Tsukuba) ;
  • Yamanari, Masahiro (Computational Optics Group, University of Tsukuba) ;
  • Myllyla, Risto A. (Optoelectronics and Measurement Techniques Laboratory, University of Oulu) ;
  • Yasuno, Yoshiaki (Computational Optics Group, University of Tsukuba)
  • Received : 2011.02.23
  • Accepted : 2011.04.19
  • Published : 2011.06.25

Abstract

Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995). https://doi.org/10.1016/0030-4018(95)00119-S
  3. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). https://doi.org/10.1364/OPEX.12.000367
  4. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-$m wavelength region," Appl. Opt. 12, 555-563 (1973). https://doi.org/10.1364/AO.12.000555
  5. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). https://doi.org/10.1364/OE.15.006121
  6. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003). https://doi.org/10.1364/OE.11.001411
  7. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 ${\mu}m$ for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073901 (2006). https://doi.org/10.1063/1.2335405
  8. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). https://doi.org/10.1364/OE.14.004403
  9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). https://doi.org/10.1364/OL.27.001415
  10. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Comm. 229, 79-84 (2004). https://doi.org/10.1016/j.optcom.2003.10.041
  11. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). https://doi.org/10.1364/OL.28.002201
  12. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004). https://doi.org/10.1364/OPEX.12.006184
  13. E. Gotzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). https://doi.org/10.1364/OPEX.13.000583
  14. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1965 (2006). https://doi.org/10.1364/AO.45.001861
  15. R. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007). https://doi.org/10.1063/1.2437682
  16. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). https://doi.org/10.1364/OE.14.001487
  17. P. Bu, X. Wang, and O. Sasaki, "Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry," J. Opt. A: Pure Appl. Opt. 9, 422-426 (2007). https://doi.org/10.1088/1464-4258/9/4/017
  18. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). https://doi.org/10.1364/OL.32.002918
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007). https://doi.org/10.1364/OE.15.013375
  20. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). https://doi.org/10.1364/OL.32.003453
  21. L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3455 (2007). https://doi.org/10.1364/OL.32.003423
  22. A. Bachmann, R. Michaely, T. Lasser, and R. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). https://doi.org/10.1364/OE.15.009254
  23. A. Vakhtin, K. Peterson, and D. Kane, "Demonstration of complex-conjugate-resolved harmonic Fourier-domain optical coherence tomography imaging of biological samples," Appl. Opt. 46, 3870-3877 (2007). https://doi.org/10.1364/AO.46.003870
  24. B. Vakoc, S Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). https://doi.org/10.1364/OL.31.000362
  25. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using $3{\times}3$ fiber couplers," Opt. Express 13, 957-967 (2005). https://doi.org/10.1364/OPEX.13.000957
  26. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). https://doi.org/10.1364/OL.30.000147
  27. T. Fabritius, S. Makita, M. Yamanari, R. Myllyla, T. Yatagai, and Y. Yasuno, "Full range $1-{\mu}m$ spectral domain optical coherence tomography by using electro-optical phase modulator," Proc. SPIE 6847, 68471S1-10 (2008).
  28. S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-764 (2008). https://doi.org/10.1364/OL.33.000732
  29. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, highspeed, high-resolution $1-{\mu}m$ spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). https://doi.org/10.1364/OE.16.008406
  30. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). https://doi.org/10.1364/OPEX.13.010217
  31. R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). https://doi.org/10.1088/0031-9155/51/12/015
  32. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ${\mu}m$ wavelength," Opt. Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598

Cited by

  1. Optical Monitoring of Tumors in BALB/c Nude Mice Using Optical Coherence Tomography vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.091
  2. Full resolution Fourier domain optical coherence tomography vol.19, pp.6, 2017, https://doi.org/10.1088/2040-8986/aa6dc0
  3. Shift-multiplexing complex spectral-domain optical coherence tomography vol.53, pp.1, 2014, https://doi.org/10.1117/1.OE.53.1.014101