DOI QR코드

DOI QR Code

Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide

  • Jafarian, Behnaz (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Nozhat, Najmeh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
  • Received : 2010.09.28
  • Accepted : 2011.03.28
  • Published : 2011.06.25

Abstract

A novel triangular-shaped plasmonic metal-insulator-metal (MIM) Bragg grating waveguide is introduced, whose band-gap is narrower than that of the conventional step type and wider than that of the sawtoothshaped one. Moreover apodized triangular-shaped MIM Bragg grating structures are proposed in order to reduce the side lobes of the transmission spectrum, because the Bragg reflector with a sawtooth profile has a smoother transmission spectrum than that of a triangular-shaped one. The performance of the proposed structures is simulated by using the finite difference time domain method.

Keywords

References

  1. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007). https://doi.org/10.1126/science.1137368
  2. H. Rather, Surface Plasmon (Springer-Verlag, Berlin, Germany, 1988).
  3. Y. Sugawara, T. A. Kelf, and J. J. Baumberg, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006). https://doi.org/10.1103/PhysRevLett.97.266808
  4. F. M. Kong, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconducor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, PIER 82, 257-270 (2008). https://doi.org/10.2528/PIER08031224
  5. S. A. Maier, "Plasmonics: metal nanostructures for subwavelength photonic devices," IEEE J. Select. Topics Quantum Electron. 12, 1214-1220 (2006). https://doi.org/10.1109/JSTQE.2006.879582
  6. J. W. Liaw, M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," J. Electromagn. Waves and Appl. 19, 1787-1794 (2005). https://doi.org/10.1163/156939305775696865
  7. J. J. Wu, T. J. Yang, and L. F. Shen, "Subwavelength microwave guiding by a periodically corrugated metal wire," J. Electromagn. Waves and Appl. 23, 11-19 (2009). https://doi.org/10.1163/156939309787604616
  8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  9. L. Lin, R. J. Blaikie, and R. J. Reeves, "Surface-plasmonenhanced optical transmission through planar metal films," J. Electromagn. Waves and Appl. 1, 634-637 (2005).
  10. Q. Zhang, X. G. Hung, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7554 (2009). https://doi.org/10.1364/OE.17.007549
  11. C. Min and G. Veronis, "Absorption switches in metaldielectric- metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009). https://doi.org/10.1364/OE.17.010757
  12. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008). https://doi.org/10.1364/OE.16.000413
  13. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express 16, 4888-4894 (2008). https://doi.org/10.1364/OE.16.004888
  14. A. Hosseini and Y. Massoud, "A low-loss metal-insulatormetal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006). https://doi.org/10.1364/OE.14.011318
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). https://doi.org/10.1126/science.1071895
  16. S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, "Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor," J. Opt. Soc. Korea 13, 392-397 (2009). https://doi.org/10.3807/JOSK.2009.13.3.392
  17. Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons," Opt. Comm. 259, 690-695 (2006). https://doi.org/10.1016/j.optcom.2005.09.034
  18. R. Zia, M. D, Selker, P. B. Catrysse, and M. L. Brongrsma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). https://doi.org/10.1364/JOSAA.21.002442
  19. A. Hosseini, H. Nejati, and Y. Massoud, "Subwavelength three-dimensional Bragg filtering in integrated slot plasmonic waveguides," in Proc. IEEE International Conf. on Nanotechnology (Hong Kong, Aug. 2007), pp. 502-505. https://doi.org/10.1109/NANO.2007.4601241
  20. J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices," IEEE J. Select. Topics Quantum Electron. 46, 40-49 (2010). https://doi.org/10.1109/JQE.2009.2024328
  21. Y. Liu, Y. Liu, and J. Kim, "Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles," Opt. Express 18, 11589-11598 (2010). https://doi.org/10.1364/OE.18.011589
  22. I. S. Jeong, H. R. Park, S. W. Lee, and M. H. Lee, "Polymeric waveguides with Bragg gratings in the middle of the core layer," J. Opt. Soc. Korea 13, 294-298 (2009). https://doi.org/10.3807/JOSK.2009.13.2.294
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-difference Time-domain Method (Artech House, Boston, USA, 2000).
  24. Y. Q. Zhang and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, PIER 96, 155-172 (2009).
  25. A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475-1480 (2008). https://doi.org/10.1364/OE.16.001475
  26. P. Yeh, Optical Waves in Layered Media (Wiley, New York, USA, 1988).
  27. N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, PIER 99, 289-306 (2009).

Cited by

  1. Detuned Plasmonic Bragg Grating Sensor Based on a Defect Metal-Insulator-Metal Waveguide vol.16, pp.12, 2016, https://doi.org/10.3390/s16060784
  2. All-optical XOR and NAND logic gates based on plasmonic nanoparticles vol.392, 2017, https://doi.org/10.1016/j.optcom.2017.02.007
  3. Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
  4. Switchable multiwavelength filter based on a hybrid sagnac interferometer vol.60, pp.8, 2012, https://doi.org/10.3938/jkps.60.1207
  5. All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.432
  6. Investigating the optical NOR gate using plasmonic nanorods vol.29, pp.5, 2016, https://doi.org/10.1002/jnm.2142
  7. Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.261
  8. Investigating the optical XNOR gate using plasmonic nano-rods vol.19, 2016, https://doi.org/10.1016/j.photonics.2016.02.001