DOI QR코드

DOI QR Code

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

  • Chan, Trevor (School of Electrical Engineering, Korea University) ;
  • Son, Sung-Hun (School of Electrical Engineering, Korea University) ;
  • Kim, Kyoung-Chan (School of Electrical Engineering, Korea University) ;
  • Kim, Tae-Geun (School of Electrical Engineering, Korea University)
  • Received : 2011.03.03
  • Accepted : 2011.04.15
  • Published : 2011.06.25

Abstract

Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

Keywords

References

  1. S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, "All-optical flip-flop operation based on polarization bistability of conventional-type $1.55-{\mu}m$ wavelength single-mode VCSELs," J. Opt. Soc. Korea 14, 137-141 (2010). https://doi.org/10.3807/JOSK.2010.14.2.137
  2. S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010). https://doi.org/10.3807/JOSK.2010.14.1.038
  3. R. Puchert, A. Barwolff, U. Menzel, A. Lau, M. Voss, and T. Elsaesser, "Facet and bulk heating of GaAs/AlGaAs high-power laser arrays studied in spatially resolved emission and micro-Raman experiments," J. Appl. Phys. 80, 5559-5563 (1996). https://doi.org/10.1063/1.363606
  4. M. B. Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Muller, M. Reufer, K. Streubel, J. W. Tomm, and G. Bacher, "Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes," Appl. Phys. Lett. 91, 041115-041115-3 (2007). https://doi.org/10.1063/1.2760143
  5. M. Hempel, J. W. Tomm, M. Ziegler, T. Elsaesser, N. Michel, and M. Krakowski, "Catastrophic optical damage at front and rear facets of diode lasers," Appl. Phys. Lett. 97, 231101-231101-3 (2010). https://doi.org/10.1063/1.3524235
  6. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994). https://doi.org/10.1063/1.111097
  7. S. Y. Law and G. P. Agrawal, "Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 462-468 (1997). https://doi.org/10.1109/3.556016
  8. H. J. Unold, M. Golling, F. Mederer, R. Michalzik, D. Supper, and K. J. Ebeling, "Single mode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching," Electron. Lett. 37, 570-572 (2001). https://doi.org/10.1049/el:20010407
  9. W. T. Tsang, "Extermely low threshold (AlGa)As gradedindex waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett. 40, 217-219 (1982). https://doi.org/10.1063/1.93046
  10. J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, "Threshold current of single quantum well lasers: the role of the confining layers," Appl. Phys. Lett. 49, 1325-1327 (1986). https://doi.org/10.1063/1.97366
  11. J. A. Martin and M. Sanchez, "Comparison between a graded and setp-index optical cavity in InGaN MQW laser diodes," Semicond. Sci. Technol. 20, 290-295 (2005). https://doi.org/10.1088/0268-1242/20/3/006
  12. D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, "Quantum dot lasers: breakthrough in optoelectronics," Thin Solid Films 367, 235-249 (2007).
  13. M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop'ev, and Zh. I. Alferov, "Ultra narrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995). https://doi.org/10.1103/PhysRevLett.74.4043
  14. A. R. Kovsh, J. S. Wang, R. S. Hsiao, L. P. Chen, D. A. Livshits, G. Lin, V. M. Ustinov, and J. Y. Chi, "High power (200 mW) single mode operation of GaAs based InGaAsN/GaAs ridge waveguide lasers with wavelength around 1300 nm," Electron. Lett. 39, 1726-1728 (2003). https://doi.org/10.1049/el:20031085
  15. Z.-M. Li, "Physical models and numberical simulation of modern semiconductor lasers," Proc. SPIE 2994, 698-708 (1997). https://doi.org/10.1117/12.275620