• 제목/요약/키워드: spectral boundedness

검색결과 4건 처리시간 0.016초

ON SPECTRAL BOUNDEDNESS

  • Harte, Robin
    • 대한수학회지
    • /
    • 제40권2호
    • /
    • pp.307-317
    • /
    • 2003
  • For linear operators between Banach algebras "spectral boundedness" is derived from ordinary boundedness by substituting spectral radius for norm. The interplay between this concept and some of its near relatives is conspicuous in a result of Curto and Mathieu.

On the Invariance of Primitive Ideals via φ-derivations on Banach Algebras

  • Jung, Yong-Soo
    • Kyungpook Mathematical Journal
    • /
    • 제53권4호
    • /
    • pp.497-505
    • /
    • 2013
  • The noncommutative Singer-Wermer conjecture states that every derivation on a Banach algebra (possibly noncommutative) leaves primitive ideals of the algebra invariant. This conjecture is still an open question for more than thirty years. In this note, we approach this question via some sufficient conditions for the separating ideal of ${\phi}$-derivations to be nilpotent. Moreover, we show that the spectral boundedness of ${\phi}$-derivations implies that they leave each primitive ideal of Banach algebras invariant.

LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.151-157
    • /
    • 2010
  • In this note, we obtain range inclusion results for left Jordan derivations on Banach algebras: (i) Let $\delta$ be a spectrally bounded left Jordan derivation on a Banach algebra A. Then $\delta$ maps A into its Jacobson radical. (ii) Let $\delta$ be a left Jordan derivation on a unital Banach algebra A with the condition sup{r$(c^{-1}\delta(c))$ : c $\in$ A invertible} < $\infty$. Then $\delta$ maps A into its Jacobson radical. Moreover, we give an exact answer to the conjecture raised by Ashraf and Ali in [2, p. 260]: every generalized left Jordan derivation on 2-torsion free semiprime rings is a generalized left derivation.