• 제목/요약/키워드: special divisor

검색결과 9건 처리시간 0.023초

소(少) 제수용 잉여수계 제산 연산기 설계에 관한 연구 (A study on the design of general division operator for the divisor with a small number in RNS)

  • 김용성
    • 정보학연구
    • /
    • 제7권2호
    • /
    • pp.19-28
    • /
    • 2004
  • 잉여수계를 사용한 연산기는 디지털 신호처리, 컴퓨터 그래픽 등에 있어서 여러가지 장점을 갖으므로 전용 프로세서 설계에 사용되고 있다. 그러나 크기 비교와 일반적인 제산에 있어서 단점을 갖는다. 본 논문에서 제안된 연산기는 곱의 역을 사용한 제산의 결과가 나머지를 갖는다면 현재 제수에 의해 산출된 몫의 최대 값보다 큰 값이 발생되는 조건을 반복연산의 종결조건으로 사용하였으며, 몫의 비교를 대응된 제수 값으로 대신하였다. 그러므로, 설계된 연산기는 작은 크기의 제한된 제수를 사용하는 제한점은 갖지만, 컴퓨터 그래픽의 스케일링 등에 적용하는 경우 연산기의 크기 및 속도가 우수한 제산 연산기로 사용할 수 있다.

  • PDF

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms

  • Park, Tae-Jun;Lee, Mun-Kyu;Park, Kun-Soo;Chung, Kyo-Il
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.617-627
    • /
    • 2005
  • This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant-Lambert-Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.

  • PDF

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

GROSSBERG-KARSHON TWISTED CUBES AND BASEPOINT-FREE DIVISORS

  • HARADA, MEGUMI;YANG, JIHYEON JESSIE
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.853-868
    • /
    • 2015
  • Let G be a complex semisimple simply connected linear algebraic group. The main result of this note is to give several equivalent criteria for the untwistedness of the twisted cubes introduced by Grossberg and Karshon. In certain cases arising from representation theory, Grossberg and Karshon obtained a Demazure-type character formula for irreducible G-representations as a sum over lattice points (counted with sign according to a density function) of these twisted cubes. A twisted cube is untwisted when it is a "true" (i.e., closed, convex) polytope; in this case, Grossberg and Karshon's character formula becomes a purely positive formula with no multiplicities, i.e., each lattice point appears precisely once in the formula, with coefficient +1. One of our equivalent conditions for untwistedness is that a certain divisor on the special fiber of a toric degeneration of a Bott-Samelson variety, as constructed by Pasquier, is basepoint-free. We also show that the strict positivity of some of the defining constants for the twisted cube, together with convexity (of its support), is enough to guarantee untwistedness. Finally, in the special case when the twisted cube arises from the representation-theoretic data of $\lambda$ an integral weight and $\underline{w}$ a choice of word decomposition of a Weyl group element, we give two simple necessary conditions for untwistedness which is stated in terms of $\lambda$ and $\underline{w}$.

ABS ALGORITHMS FOR DIOPHANTINE LINEAR EQUATIONS AND INTEGER LP PROBLEMS

  • ZOU MEI FENG;XIA ZUN QUAN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.93-107
    • /
    • 2005
  • Based on the recently developed ABS algorithm for solving linear Diophantine equations, we present a special ABS algorithm for solving such equations which is effective in computation and storage, not requiring the computation of the greatest common divisor. A class of equations always solvable in integers is identified. Using this result, we discuss the ILP problem with upper and lower bounds on the variables.

MERSENNE PRIME FACTOR AND SUM OF BINOMIAL COEFFICIENTS

  • JO, GYE HWAN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.61-68
    • /
    • 2022
  • Let Mp := 2p - 1 be a Mersenne prime. In this article, we find integers a, b, c, d, e and n satisfying $\sum_{t=0}^{n}\;\({an+b\\ct+d}\)\;=\;M_{p^e}$ given a Mersenne prime number Mp. In order to find a special case that satisfies the above results, we reprove an well-known relation of a certain sum of binomial coefficients and a divisor function.

CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS

  • Kim, Daeyeoul
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.445-506
    • /
    • 2013
  • Let ${\sigma}_s(N)$ denote the sum of the s-th power of the positive divisors of N and ${\sigma}_{s,r}(N;m)={\sum_{d{\mid}N\\d{\equiv}r\;mod\;m}}\;d^s$ with $N,m,r,s,d{\in}\mathbb{Z}$, $d,s$ > 0 and $r{\geq}0$. In a celebrated paper [33], Ramanuja proved $\sum_{k=1}^{N-1}{\sigma}_1(k){\sigma}_1(N-k)=\frac{5}{12}{\sigma}_3(N)+\frac{1}{12}{\sigma}_1(N)-\frac{6}{12}N{\sigma}_1(N)$ using elementary arguments. The coefficients' relation in this identity ($\frac{5}{12}+\frac{1}{12}-\frac{6}{12}=0$) motivated us to write this article. In this article, we found the convolution sums $\sum_{k<N/m}{\sigma}_{1,i}(dk;2){\sigma}_{1,j}(N-mk;2)$ for odd and even divisor functions with $i,j=0,1$, $m=1,2,4$, and $d{\mid}m$. If N is an odd positive integer, $i,j=0,1$, $m=1,2,4$, $s=0,1,2$, and $d{\mid}m{\mid}2^s$, then there exist $u,a,b,c{\in}\mathbb{Z}$ satisfying $\sum_{k& lt;2^sN/m}{\sigma}_{1,i}(dk;2){\sigma}_{1,j}(2^sN-mk;2)=\frac{1}{u}[a{\sigma}_3(N)+bN{\sigma}_1(N)+c{\sigma}_1(N)]$ with $a+b+c=0$ and ($u,a,b,c$) = 1(Theorem 1.1). We also give an elementary problem (O) and solve special cases of them in (O) (Corollary 3.27).