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MERSENNE PRIME FACTOR AND SUM OF BINOMIAL
COEFFICIENTS†

GYE HWAN JO AND DAEYEOUL KIM∗

Abstract. Let Mp := 2p − 1 be a Mersenne prime. In this article, we
find integers a, b, c, d, e and n satisfying

∑n
t=0

(an+b
ct+d

)
= Mpe given a

Mersenne prime number Mp. In order to find a special case that satisfies
the above results, we reprove an well-known relation of a certain sum of
binomial coefficients and a divisor function.
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1. Introduction

The study of divisor functions and binomial coefficients is important and
diverse field in number theory. The sum of the l-th powers of the divisors
of n will be denoted by σl(n). The traditional results associated with divisor
functions are [1], [7] and so on. Although Mersenne primes are closely related
to perfect numbers, it can be seen that they are also useful for iteration of
divisor functions [4]. We will examine the problem in this article by examining
examples of whether the sum of any binomial coefficients includes a Mersenne
prime. We can easily see that

(
5
1

)
= 3 × 5

3 ,
(
7
2

)
= 7 × 9

3 ,
(
11
1

)
+
(
11
4

)
= 31 × 33

3 ,(
15
0

)
+
(
15
3

)
+
(
15
6

)
= 127× 129

3 and
(
27
0

)
+
(
27
3

)
+
(
27
6

)
+
(
27
9

)
+
(
27
12

)
= 8191× 8193

3 .
The sum of the binomial coefficients satisfying the above conditions was found
by examining ten Mersenne primes using Mathematica 11.2. Since Mersenne
primes themselves are very large numbers, we present only six Mersenne primes
in Table 1. Based on these examples, we suggest the following question.
Question 1.1. Given a Mersenne prime number Mp, can one find integers a,
b, c, d, e and n such that

∑n
t=0

(
an+b
ct+d

)
=Mpe?
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p Mp e
∑n
t=0

(
an+b
ct+d

)
3 7 3

∑ 3−2−1
3

t=0

(
2×3+1
3t+2

)
5 31 11

∑ 5−1−1
3

t=0

(
2×5+1
3t+1

)
7 127 43

∑ 7−0−1
3

t=0

(
2×7+1

3t

)
13 8191 2731

∑ 13−0−1
3

t=0

(
2×13+1

3t

)
17 131071 43691

∑ 17−1−1
3

t=0

(
2×17+1
3t+1

)
19 524287 174763

∑ 19−0−1
3

t=0

(
2×19+1

3t

)
Table 1. Six examples for sums of binomial coefficients.

The problem of completely solving Question 1.1 seems difficult. This article
aims to find and prove the following special case that satisfies Question 1.1.

Theorem 1.2. Let i = 0, 1, 2, let M ′
p :=

Mp+2
3 and p = 3n+ 1 + i. Then

p−i−1
3∑
t=0

(
2p+ 1

3t+ i

)
=MpM

′
p. (1)

If i = 2, then there exist only one Mersenne prime 7 = 23 − 1 satisfying (1).

Remark 1.3. In fact, if Mp > 3 then 2p + 1 ≡ 0 (mod 3) and M ′
p = 2p+1

3 is a
positive integer. Therefore, if Mp > 3 then Theorem 1.2 is a special case that
satisfies Question 1.1. If i = 0 in Theorem 1.2, then Mp = 127, 8191, 524287,
2147483647, 2305843009213693951, · · · . If i = 1 in Theorem 1.2, then Mp = 31,
131071, 618970019642690137449562111, · · · .

2. Proof of Theorem 1.2

To prove Theorem 1.2, the result of Lemma 2.8 is necessary. Therefore,
we prove this first. There are various ways to prove the relation between the
binomial coefficient and the divisor function. In this section, we demonstrate
four polynomials and recurrence relations. Lemma 2.8 and the inner result of
[3, 0.152] are the same, but the proof is different. We assume that n(≥ 3), m,
t and k are positive integers, unless otherwise specified. We define a sequence
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(ak(n))1≤k≤2n+1 and polynomials F (x, n), G(x), H(x, n), Γ(x, n), as follows:

ak(n) :=



(
2n+1

1

)
k = 1,

−
(
2n+1

2

)
+ 2a1(n) k = 2,(

2n+1
3

)
− 2a1(n) + 2a2(n) k = 3,

(−1)k−1
(
2n+1
k

)
+ ak−3(n)− 2ak−2(n) + 2ak−1(n) 4 ≤ k ≤ 2n− 1,

−
(
2n+1
2n

)
+ a2n−3(n)− 2a2n−2(n) k = 2n,

a2n−2(n) k = 2n+ 1

(2)
and F (x, n) := (x − 1)n − xn + 1, G(x) := x3 − 2x2 + 2x − 1, H(x, n) :=

−
∑2n−2
k=1 ak(n)x

2n−2−k, Γ(x, n) := −
(
a2n−1(n)x

2 + a2n(n)x+ a2n+1(n)
)
.

Lemma 2.1. Let n ≥ 3 be an integer. Then
F (x, 2n+ 1) = G(x)H(x, n) + Γ(x, n). (3)

Proof. It is obtained by comparing the coefficients of both sides in (3). �

To investigate some properties of the sequence (ak(n)), we introduce a se-
quence (bk(n))3≤k≤2n+1 as follows:

bk(n) := (−1)k−1

((
2n+ 1

k

)
− 2

(
2n+ 1

k − 1

)
+ 2

(
2n+ 1

k − 2

)
−
(
2n+ 1

k − 3

))
. (4)

The following Lemma 2.2 is derived from the symmetric property of binomial
coefficients, that is,

(
m
t

)
=
(
m
m−t

)
for 0 ≤ t ≤ m.

Lemma 2.2. Let 1 ≤ t ≤ 2n− 3. Then b(2n+1)−t(n) = −b3+t(n). In particular,
bn+2(n) = 0.

Lemma 2.3. Let 4 ≤ k ≤ 2n− 1. Then

bk(n) =

{
ak(n) 4 ≤ k ≤ 6,

ak(n)− ak−6(n) 7 ≤ k ≤ 2n− 1.
(5)

Proof. This lemma is proved by using the induction on k. �

Lemma 2.4. Let n ≥ 3 be a positive integer. Then
(a) a2n−2(n) = a2n+1(n) = 0,

(b) a2n−1(n) = −a2n(n).

Proof. Note that F (x, 2n+ 1) = F (1− x, 2n+ 1) for all positive integers n. By
Lemma 2.1, we have that

F (1− x, 2n+ 1) = G(1− x)H(1− x, n) + Γ(1− x, n). (6)
Expand the right-hand side of (6) then we obtain
G(1− x)H(1− x, n) + Γ(1− x, n) =
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x(x2 − x+ 1)

(
2n−2∑
k=1

ak(n)(1− x)2n−2−k

)
(7)

−
(
a2n−1(n)x

2 − (2a2n−1(n) + a2n(n))x+ a2n−1(n) + a2n(n) + a2n+1(n)
)
.

Hence, the constant term of F (1 − x, 2n + 1) is a2n−1(n) + a2n(n) + a2n+1(n).
By the definition of F (x, 2n+ 1), we obtain

F (0, 2n+ 1) = a2n−1(n) + a2n(n) + a2n+1(n) = 0. (8)
On the other hand, if we substitute x to 1 in (7), then we have

a2n+1(n) = a2n−2(n) = 0. (9)
By (8) and (9),

a2n−1(n) + a2n(n) = 0.

�

It is well-known [6, p.315] that(
m

t

)
+

(
m

t+ 1

)
=

(
m+ 1

t+ 1

)
for 0 ≤ t ≤ m.

Using the Pascal’s rule, we obtain

Lemma 2.5. Let n be a positive integer with n ≥ 4. If 6 ≤ k ≤ 2n− 1 then
bk(n) = bk(n− 1)− 2bk−1(n− 1) + bk−2(n− 1). (10)

Lemma 2.6. If n is a positive integer then

a2n(n) = −a2n−1(n) =

{
−3 if n ≡ 1(mod 3),

0 otherwise.

Proof. By (2) and Lemma 2.4, we have that a2n(n) = −
(
2n+1
2n

)
+ a2n−3(n) and

a2n−1(n) =

(
2n+ 1

2n− 1

)
+ a2n−4(n)− 2a2n−3(n)

=

(
2n+ 1

2n− 1

)
+ a2n−4(n)− 2

(
a2n(n) +

(
2n+ 1

2n

))
. (11)

(2) and (11) imply

a2n(n) =

(
2n+ 1

2n− 1

)
− 2

(
2n+ 1

2n

)
+ a2n−4(n) = −a2(n) + a2n−4(n). (12)

To prove this lemma, we compute a2n−4(n) for three cases n ≡ 0, 1, 2(mod 3).
First, we consider the case for n ≡ 0(mod 3). It is divided into n ≡ 0, 3(mod

6). Let n = 6m with m ≥ 1. Then, by Lemma 2.2 and 2.3, we have that

a2n−4(n) = a12m−4(6m) = a2(6m) +

2m−1∑
t=1

b6t+2(6m)
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= a2(6m) +

m−1∑
t=1

b6t+2(6m) +

2m−1∑
t=m+1

b6t+2(6m) = a2(6m).

It is readily checked that
∑2m−1
t=m+1 b6t+2(6m) = −

∑m−1
t=1 b6t+2(6m) by using

Lemma 2.2 and 2.3. Combining (12) and a12m−4(6m) = a2(6m) leads to
a12m(6m) = 0. Similarly, we can verify that a12m+2(6m + 3) = a2(6m + 3)
and a12m+6(6m+ 3) = 0. Thus, if n ≡ 0 (mod 3), then

a2n(n) = a2n−1(n) = 0. (13)

Next, consider the case for n ≡ 1 (mod 3). It is also divided into n ≡ 1, 4
(mod 6). The Proofs of case n ≡ 1 (mod 6) and case n ≡ 4 (mod 6) are almost
identical. So we will check only the case for n ≡ 1(mod 6). Let n = 6m+1 with
m ≥ 1. Then, by Lemma 2.3 and 2.5, we have

a2n−4(n) = a12m−2(6m+ 1) = a4(6m+ 1) +

2m−1∑
t=1

b6t+4(6m+ 1)

= a4(6m+ 1) +

2m−1∑
t=1

(b6t+4(6m)− 2b6t+3(6m) + b6t+2(6m)) .

By Lemma 2.3,
∑2n−1
t=1 b6t+4−j(6n+1) = a12n−(j+2)(6n)−a4−j(6n) for j = 0, 1, 2.

Thus, the following holds that

a12m−2(6m+ 1) =a4(6m+ 1) + (a12m−2(6m)− a4(6m))

− (2a12m−3(6m)− 2a3(6m)) + (a12m−4(6m)− a2(6m))

=a4(6m+ 1) + (a12m−4(6m)− 2a12m−3(6m))

− a4(6m) + 2a3(6m)− a2(6m).

By (2) and Lemma 2.4,

a12m−1(6m) =

(
12m+ 1

12m− 1

)
+ a12m−4(6m)− 2a12m−3(6m) = 0.

Hence we have that

a12m−2(6m+1) = a4(6m+1)−
(
12m+ 1

2

)
−a4(6m)+2a3(6m)−a2(6m). (14)

From (12), (14) and Lemma 2.3, we obtain

a12m+2(6m+ 1) =− a2(6m+ 1) + a12m−2(6m+ 1)

=− a2(6m+ 1) + a4(6m+ 1)−
(
12m+ 1

2

)
− a4(6m) + 2a3(6m)− a2(6m)

=−
(
12m+ 3

1

)
−
(
12m+ 3

2

)
+ 2

(
12m+ 3

3

)
−
(
12m+ 3

4

)
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+

(
12m+ 1

1

)
− 2

(
12m+ 1

2

)
+

(
12m+ 1

4

)
= −3.

Thus, if n ≡ 1(mod 3), then
a2n(n) = −a2n−1(n) = −3. (15)

Finally, let n = 6m + 2 with m ≥ 1. Then, by Lemma 2.3, 2.4 and 2.5, we
have

a2n−4(n) =a12m(6m+ 2) =

2m∑
t=1

b6t(6m+ 2)

=

2m∑
t=1

(b6t(6m+ 1)− 2b6t−1(6m+ 1) + b6t−2(6m+ 1))

=− 2a12m−1(6m+ 1) + a12m−2(6m+ 1). (16)
By (15),

a12m+1(6m+1) =

(
12m+ 3

12m+ 1

)
+ a12m−2(6m+1)− 2a12m−1(6m+1) = 3. (17)

Combine (12), (16) and (17) then we have

a12m+4(6m+ 2) =− a2(6m+ 2) + 3−
(
12m+ 3

2

)
=−

(
12m+ 5

2

)
+ 2

(
12m+ 5

1

)
+ 3−

(
12m+ 3

2

)
= 0.

Similarly, we can compute a12m+10(6m+ 5) = 0. This completes the proof. �

Lemma 2.7. Let n ≡ 0, 2 (mod 3). If 1 ≤ k ≤ n, then ak(n) = a2n−2−k(n).

Proof. Let n ≡ 0, 2(mod 3). By (2) and Lemma 2.6, we obtain

a2n(n) = −
(
2n+ 1

2n

)
+ a2n−3(n)− 2a2n−2(n) = 0.

It induces that a2n−3(n) =
(
2n+1

1

)
= a1(n). Similarly, we have a2n−4(n) = a2(n)

and a2n−5(n) = a3(n). To use the mathematical induction, suppose that, for
fixed k ≥ 3,

a2n−2−k(n) = ak(n), a2n−1−k(n) = ak−1(n), a2n−k(n) = ak−2(n).

By (2), we obtain

a2n−k(n) = (−1)2n−1−k
(
2n+ 1

2n− k

)
+ a2n−3−k(n)− 2a2n−2−k(n) + 2a2n−1−k(n)

and

a2n−3−k(n) = (−1)k
(
2n+ 1

k + 1

)
+ ak−2(n)− 2ak−1(n) + 2ak(n) = ak+1(n).

�
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Lemma 2.8. Let n be a nonnegative integer. If i = 0, 1, 2 then
n∑
t=0

(
6n+ 3 + 2i

3t+ i

)
= σ2(2

3n+i). (18)

Furthermore,
∑n
t=0

(
6n+7
3t+2

)
= 5

∑n
t=0

(
6n+5
3t+1

)
− 4

∑n
t=0

(
6n+3
3t

)
.

Proof. By Lemma 2.2, 2.3 and 2.4, the following holds, for n ≥ 1,

a12n−2(6n) =

2n−1∑
t=0

b4+6t(6n) =

n−1∑
t=0

b4+6t(6n)−
n−1∑
t=0

b6+6t(6n)

=
n−1∑
t=0

[(
12n+ 1

6t+ 6

)
− 2

(
12n+ 1

6t+ 5

)
+

(
12n+ 1

6t+ 4

)]

+

n−1∑
t=0

[(
12n+ 1

6t+ 3

)
− 2

(
12n+ 1

6t+ 2

)
+

(
12n+ 1

6t+ 1

)]

=

6n∑
t=1

(
12n+ 1

t

)
− 3

2n∑
t=1

(
12n+ 1

3t− 1

)

=(212n − 1)− 3

2n−1∑
t=0

(
12n+ 1

3t+ 2

)
= 0.

Thus, we have 212n−1 = 3
∑2n−1
t=0

(
12n+1
3t+2

)
. Similarly, if we compute a12n+4(6n+

3), then we obtain 212n+6 − 1 = 3
∑2n
t=0

(
12n+7
3t+2

)
. By combining them, we have

3

n−1∑
t=0

(
6n+ 1

3t+ 2

)
= 26n − 1,

n−1∑
t=0

(
6n+ 1

3t+ 2

)
= σ2(2

3n−1). (19)

If we apply the Pascal’s rule to the second of (19), then we have

σ2(2
3n−1) =

n−1∑
t=0

(
6n+ 1

3t+ 2

)
=

n−1∑
t=0

[(
6n− 1

3t+ 2

)
+ 2

(
6n− 1

3t+ 1

)
+

(
6n− 1

3t

)]

=

3n−1∑
t=0

(
6n− 1

t

)
+

n−1∑
t=0

(
6n− 1

3t+ 1

)
.

Since
∑3n−1
t=0

(
6n−1
t

)
= 26n−2 and σ2(2

3n−1) = σ2(2
3n−2) + 26n−2, we obtain∑n−1

t=0

(
6n−1
3t+1

)
= σ2(2

3n−2). Repeat the above method again then we have∑n−1
t=0

(
6n+3
3t

)
= σ2(2

3n−3). Using [7, p.26], the final result of Lemma 2.8 can be
easily obtained. �

Proof of Theorem 1.2
The case of Mp = 3, 7 was shown in introduction. Therefore, we assume that

Mp > 7. It is well-known that σ2(23n+i) = (23n+1+i − 1)( 2
3n+1+i+1

3 ). If i = 2

and n ≥ 1 then 23n+1+i − 1 is not a prime which is divided by 7. For the case
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of i = 0 or 1, if a Mersenne prime 2p − 1 is given, then it is possible to find a
positive integer n which 3n+ 1 + i = p is a prime number. Thus, for a given
Mp > 3, we can find integers n and i such that Mp = 2p−1 = 23n+1+i−1. This
completes the proof of Theorem 1.2. �
Question 2.9. It is a famous conjecture that Mersenne primes are infinite [2].
For the question of the number of extended Mersenne primes, see [5]. From
Table 1, given M ′

p are all prime numbers. From this, we raise the question of
whether the number of primes M ′

p is infinite or not.
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